Programmable initiation of mRNA translation by trans-RNA

  • Shirokikh N.E. and Preuss T. Translation initiation by cap-dependent ribosome recruitment: recent discoveries and open questions. Wiley Interdisciplinarity. Reverend RNA 9e1473 (2018).

    Article
    PubMed

    Google Scholar

  • Brito Querido J, Diaz-Lopez I and Ramakrishnan V. Molecular basis of translation initiation and its regulation in eukaryotes. Nat. Rev. Mol. Cell Biol. 25168–186 (2023).

    Article
    PubMed

    Google Scholar

  • Sonenberg, N. and Dever, T.E. Eukaryotic translation initiation factors and regulators. Well. Opinion. Structure. Biol. 1356–63 (2003).

    Article
    PubMed

    Google Scholar

  • Brito Querido, J. et al. Structure of the human 48S translation initiation complex. Science 3691220–1227 (2020).

    Article
    PubMed

    Google Scholar

  • Pelletier, J. and Sonenberg, N. Organizational principles of eukaryotic ribosome recruitment. Anna. Rev. Biochem. 88307–335 (2019).

    Article
    PubMed

    Google Scholar

  • Hinnebusch, A.G. Scanning mechanism of eukaryotic translation initiation. Anna. Rev. Biochem. 83779–812 (2014).

    Article
    PubMed

    Google Scholar

  • Ingolia, N.T., Lareau, L.F. and Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147789–802 (2011).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Li, S., Liu, B., Huang, S.S., Shen, B., and Qian, S.B. Global mapping of translation initiation sites in mammalian cells at single nucleotide resolution. Textbook Natl Acad. Sci. USA 109E2424–E2432 (2012).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Orr, M.W., Mao, Y., Storz, G., and Qian, S.B. Alternative ORFs and small ORFs: shedding light on a dark proteome. Nucleic Acids Res. 481029–1042 (2020).

    Article
    PubMed

    Google Scholar

  • Hinnebush A.G., Ivanov I.P. and Sonenberg N. Control of translation by the 5' untranslated regions of eukaryotic mRNAs. Science 3521413–1416 (2016).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Chen J, et al. Ubiquitous functional translation of non-canonical human open reading frames. Science 3671140–1146 (2020).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Otupal, P.B., Kress, B.F., Doudna, I and Schoeniger, J.S. Crispr-Rnaa: Targeted translation activation using DCas13 targeting translation initiation factors. Nucleic Acids Res. 508986–8998 (2022).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Cao, Y. et al. RNA-based translation activators for targeted gene activation. Nat. General. 146827 (2023).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Crook, S.T., Baker, B.F., Crook, R.M. and Liang, X.H. Antisense technology: review and prospectus. Nat. Reverend Friend of the Disks. 20427–453 (2021).

    Article
    PubMed

    Google Scholar

  • Chen, H. et al. Chemical and topological design of multicapped mRNA and capped circular RNA for translation enhancement. Nat. Biotechnology. 431128–1143 (2024).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Dersch D, Youdell JW and Wei J. A SIINFEKL-based system for measuring the efficiency and kinetics of MHC class I antigen presentation. Methods Mol. Biol. 1988109–122 (2019).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Gu, Y., Mao, Y., Jia, L., Dong, L., and Qian, S.B. Bidirectional ribosomal scanning controls the stringency of start codon selection. Nat. General. 126604 (2021).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Lee, A.S., Kranzusch, P.J., Doudna, J.A. and Keith, J.H. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature 53696–99 (2016).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Simonetti, A., Guca, E., Bohler, A., Kuhn, L. and Hashem, Y. Structural insights into late-stage mammalian initiation complexes. Cellular representative 31107497 (2020).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Chen R. et al. Design of circular RNA to enhance protein production. Nat. Biotechnology. 41262–272 (2023).

    Article
    PubMed

    Google Scholar

  • Calvo, S.E., Pagliarini, D.J. and Moota, V.C. Upstream open reading frames cause widespread reduction in protein expression and are polymorphic in humans. Textbook Natl Acad. Sci. USA 1067507–7512 (2009).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Wattam, K.M. and Century, R.C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Textbook Natl Acad. Sci. USA 10111269–11274 (2004).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Amery, K. and Harris, A.L. Activation of transcription factor 4. Int. J Biochem. Cell Biol. 4014–21 (2008).

    Article
    PubMed

    Google Scholar

  • Kalkhoven, K. F., Müller, K. and Leutz, A. Translational control of the expression of C/EBPα and C/EBPβ isoforms. Gens Dev. 141920–1932 (2000).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • DeCombs, P. and Schibler, U. Liver-enriched transcriptional activator protein, LAP, and transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67569–579 (1991).

    Article
    PubMed

    Google Scholar

  • Müller, K. et al. Reducing C/EBPβ-LIP expression prolongs health and lifespan in mice. electronic life 7e34985 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Faghihi, M.A. and Wahlestedt, K. Regulatory role of natural antisense transcripts. Nat. Rev. Mol. Cell Biol. 10637–643 (2009).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Pelechano V. and Steinmetz L.M. Gene regulation by antisense transcription. Nat. Reverend Genet. 14880–893 (2013).

    Article
    PubMed

    Google Scholar

  • Koban I. et al. Formation of dsRNA leads to preferential nuclear export and gene expression. Nature 631432–438 (2024).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Reis R.S. and Poirier Y. Solving the mystery of the natural antisense transcript. Crop production trends. 261104–1115 (2021).

    Article
    PubMed

    Google Scholar

  • Gu, W. et al. CapSeq and CIP-TAP identify Pol II start sites and identify gated small RNAs as C. elegans piRNA precursors. Cell 1511488–1500 (2012).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Young, S.K., Baird, T.D. and Weck, R.S. Translational regulation of the glutamyl-prolyl-tRNA synthetase EPRS gene by bypassing upstream open reading frames with non-canonical start codons. J. Biol. chem. 29110824–10835 (2016).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Wang, J. and Qian, S.B. TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Res. 42D845–D850 (2014).

    Article
    PubMed

    Google Scholar

  • Werner, A., Kancher, A., Wahlestedt, K., and Mattick, J. S. Natural antisense transcripts as universal regulators of gene expression. Nat. Reverend Genet. 25730–744 (2024).

    PubMed

    Google Scholar

  • Wilson R.Ts. and Doudna J.A. Molecular mechanisms of RNA interaction. Anna. Reverend Biophysics. 42217–239 (2013).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Carrieri, C. et al. Long noncoding antisense RNA controls Uchl1 translation through an integrated SINEB2 repeat. Nature 491454–457 (2012).

    Article
    PubMed

    Google Scholar

  • Yang, Y. and Wang, Z. IRES-mediated cap-independent translation, a pathway leading to the cryptic proteome. J. Mol. Cell. Biol. 11911–919 (2019).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Botts, A., Fernandez, E. and Gevader, K. N-terminal proteoforms in humans. Trends in biochemistry. Sci. 45308–320 (2020).

    Article
    PubMed

    Google Scholar

  • Mao, Y., Jia, L., Dong, L., Shu, Xie, and Qian, S.B. Ribosomal frameshifting associated with start codons mediates adaptation to nutrient stress. Nat. Structure. Mol. Biol. 301816–1825 (2023).

    Article
    PubMed

    Google Scholar

  • Gene Expression Omnibus. Programmed initiation of mRNA translation trance-RNA. www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE277746 (2025).

  • Jia, L. et al. usa0ri/Jia2025. GitHub github.com/usa0ri/Jia2025/tree/master (2025).

  • Leave a Comment