Shirokikh N.E. and Preuss T. Translation initiation by cap-dependent ribosome recruitment: recent discoveries and open questions. Wiley Interdisciplinarity. Reverend RNA 9e1473 (2018).
Google Scholar
Brito Querido J, Diaz-Lopez I and Ramakrishnan V. Molecular basis of translation initiation and its regulation in eukaryotes. Nat. Rev. Mol. Cell Biol. 25168–186 (2023).
Google Scholar
Sonenberg, N. and Dever, T.E. Eukaryotic translation initiation factors and regulators. Well. Opinion. Structure. Biol. 1356–63 (2003).
Google Scholar
Brito Querido, J. et al. Structure of the human 48S translation initiation complex. Science 3691220–1227 (2020).
Google Scholar
Pelletier, J. and Sonenberg, N. Organizational principles of eukaryotic ribosome recruitment. Anna. Rev. Biochem. 88307–335 (2019).
Google Scholar
Hinnebusch, A.G. Scanning mechanism of eukaryotic translation initiation. Anna. Rev. Biochem. 83779–812 (2014).
Google Scholar
Ingolia, N.T., Lareau, L.F. and Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147789–802 (2011).
Google Scholar
Li, S., Liu, B., Huang, S.S., Shen, B., and Qian, S.B. Global mapping of translation initiation sites in mammalian cells at single nucleotide resolution. Textbook Natl Acad. Sci. USA 109E2424–E2432 (2012).
Google Scholar
Orr, M.W., Mao, Y., Storz, G., and Qian, S.B. Alternative ORFs and small ORFs: shedding light on a dark proteome. Nucleic Acids Res. 481029–1042 (2020).
Google Scholar
Hinnebush A.G., Ivanov I.P. and Sonenberg N. Control of translation by the 5' untranslated regions of eukaryotic mRNAs. Science 3521413–1416 (2016).
Google Scholar
Chen J, et al. Ubiquitous functional translation of non-canonical human open reading frames. Science 3671140–1146 (2020).
Google Scholar
Otupal, P.B., Kress, B.F., Doudna, I and Schoeniger, J.S. Crispr-Rnaa: Targeted translation activation using DCas13 targeting translation initiation factors. Nucleic Acids Res. 508986–8998 (2022).
Google Scholar
Cao, Y. et al. RNA-based translation activators for targeted gene activation. Nat. General. 146827 (2023).
Google Scholar
Crook, S.T., Baker, B.F., Crook, R.M. and Liang, X.H. Antisense technology: review and prospectus. Nat. Reverend Friend of the Disks. 20427–453 (2021).
Google Scholar
Chen, H. et al. Chemical and topological design of multicapped mRNA and capped circular RNA for translation enhancement. Nat. Biotechnology. 431128–1143 (2024).
Google Scholar
Dersch D, Youdell JW and Wei J. A SIINFEKL-based system for measuring the efficiency and kinetics of MHC class I antigen presentation. Methods Mol. Biol. 1988109–122 (2019).
Google Scholar
Gu, Y., Mao, Y., Jia, L., Dong, L., and Qian, S.B. Bidirectional ribosomal scanning controls the stringency of start codon selection. Nat. General. 126604 (2021).
Google Scholar
Lee, A.S., Kranzusch, P.J., Doudna, J.A. and Keith, J.H. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature 53696–99 (2016).
Google Scholar
Simonetti, A., Guca, E., Bohler, A., Kuhn, L. and Hashem, Y. Structural insights into late-stage mammalian initiation complexes. Cellular representative 31107497 (2020).
Google Scholar
Chen R. et al. Design of circular RNA to enhance protein production. Nat. Biotechnology. 41262–272 (2023).
Google Scholar
Calvo, S.E., Pagliarini, D.J. and Moota, V.C. Upstream open reading frames cause widespread reduction in protein expression and are polymorphic in humans. Textbook Natl Acad. Sci. USA 1067507–7512 (2009).
Google Scholar
Wattam, K.M. and Century, R.C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Textbook Natl Acad. Sci. USA 10111269–11274 (2004).
Google Scholar
Amery, K. and Harris, A.L. Activation of transcription factor 4. Int. J Biochem. Cell Biol. 4014–21 (2008).
Google Scholar
Kalkhoven, K. F., Müller, K. and Leutz, A. Translational control of the expression of C/EBPα and C/EBPβ isoforms. Gens Dev. 141920–1932 (2000).
Google Scholar
DeCombs, P. and Schibler, U. Liver-enriched transcriptional activator protein, LAP, and transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67569–579 (1991).
Google Scholar
Müller, K. et al. Reducing C/EBPβ-LIP expression prolongs health and lifespan in mice. electronic life 7e34985 (2018).
Google Scholar
Faghihi, M.A. and Wahlestedt, K. Regulatory role of natural antisense transcripts. Nat. Rev. Mol. Cell Biol. 10637–643 (2009).
Google Scholar
Pelechano V. and Steinmetz L.M. Gene regulation by antisense transcription. Nat. Reverend Genet. 14880–893 (2013).
Google Scholar
Koban I. et al. Formation of dsRNA leads to preferential nuclear export and gene expression. Nature 631432–438 (2024).
Google Scholar
Reis R.S. and Poirier Y. Solving the mystery of the natural antisense transcript. Crop production trends. 261104–1115 (2021).
Google Scholar
Gu, W. et al. CapSeq and CIP-TAP identify Pol II start sites and identify gated small RNAs as C. elegans piRNA precursors. Cell 1511488–1500 (2012).
Google Scholar
Young, S.K., Baird, T.D. and Weck, R.S. Translational regulation of the glutamyl-prolyl-tRNA synthetase EPRS gene by bypassing upstream open reading frames with non-canonical start codons. J. Biol. chem. 29110824–10835 (2016).
Google Scholar
Wang, J. and Qian, S.B. TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Res. 42D845–D850 (2014).
Google Scholar
Werner, A., Kancher, A., Wahlestedt, K., and Mattick, J. S. Natural antisense transcripts as universal regulators of gene expression. Nat. Reverend Genet. 25730–744 (2024).
Google Scholar
Wilson R.Ts. and Doudna J.A. Molecular mechanisms of RNA interaction. Anna. Reverend Biophysics. 42217–239 (2013).
Google Scholar
Carrieri, C. et al. Long noncoding antisense RNA controls Uchl1 translation through an integrated SINEB2 repeat. Nature 491454–457 (2012).
Google Scholar
Yang, Y. and Wang, Z. IRES-mediated cap-independent translation, a pathway leading to the cryptic proteome. J. Mol. Cell. Biol. 11911–919 (2019).
Google Scholar
Botts, A., Fernandez, E. and Gevader, K. N-terminal proteoforms in humans. Trends in biochemistry. Sci. 45308–320 (2020).
Google Scholar
Mao, Y., Jia, L., Dong, L., Shu, Xie, and Qian, S.B. Ribosomal frameshifting associated with start codons mediates adaptation to nutrient stress. Nat. Structure. Mol. Biol. 301816–1825 (2023).
Google Scholar
Gene Expression Omnibus. Programmed initiation of mRNA translation trance-RNA. www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE277746 (2025).
Jia, L. et al. usa0ri/Jia2025. GitHub github.com/usa0ri/Jia2025/tree/master (2025).






