Live imaging of late-stage preimplantation human embryos reveals de novo mitotic errors

  • Magli, M. C. et al. Chromosome mosaicism in day 3 aneuploid embryos that develop to morphologically normal blastocysts in vitro. Hum. Reprod. 15, 1781–1786 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mantikou, E., Wong, K. M., Repping, S. & Mastenbroek, S. Molecular origin of mitotic aneuploidies in preimplantation embryos. Biochim. Biophys. Acta 1822, 1921–1930 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Echten-Arends, J. et al. Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum. Reprod. Update 17, 620–627 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Vanneste, E. et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 15, 577–583 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sandalinas, M. et al. Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum. Reprod. 16, 1954–1958 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goddijn, M. & Leschot, N. J. Genetic aspects of miscarriage. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol. 14, 855–865 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubio, C. et al. Chromosomal abnormalities and embryo development in recurrent miscarriage couples. Hum. Reprod. 18, 182–188 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalousek, D. K. & Dill, F. J. Chromosomal mosaicism confined to the placenta in human conceptions. Science 221, 665–667 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Starostik, M. R., Sosina, O. A. & McCoy, R. C. Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism. Genome Res. 30, 814–825 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasak, L., Rull, K., Vaas, P., Teesalu, P. & Laan, M. Extensive load of somatic CNVs in the human placenta. Sci. Rep. 5, 8342 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mertzanidou, A. et al. Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos. Hum. Reprod. 28, 256–264 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fragouli, E. et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum. Reprod. 26, 480–490 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spinella, F. et al. Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertil. Steril. 109, 77–83 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Handyside, A. H et al. Combined SNP parental haplotyping and intensity analysis identifies meiotic and mitotic aneuploidies and frequent segmental aneuploidies in preimplantation human embryos. Preprint at bioRxiv https://doi.org/10.1101/2024.11.17.623999 (2024).

  • Chavli, E. A. et al. Single-cell DNA sequencing reveals a high incidence of chromosomal abnormalities in human blastocysts. J. Clin. Invest. 134, e174483 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDole, K. & Zheng, Y. Generation and live imaging of an endogenous Cdx2 reporter mouse line. Genesis 50, 775–782 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domingo-Muelas, A. et al. Human embryo live imaging reveals nuclear DNA shedding during blastocyst expansion and biopsy. Cell 186, 3166–3181 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajendraprasad, G., Rodriguez-Calado, S. & Barisic, M. SiR-DNA/SiR-Hoechst-induced chromosome entanglement generates severe anaphase bridges and DNA damage. Life Sci. Alliance 6, e202302260 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Currie, C. E. et al. The first mitotic division of human embryos is highly error prone. Nat. Commun. 13, 6755 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen, O., Saurin, A. T. & Higgins, J. M. G. The live cell DNA stain SiR-Hoechst induces DNA damage responses and impairs cell cycle progression. Sci. Rep. 8, 7898 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strnad, P. et al. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat. Methods 13, 139–142 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rayon, T. Cell time: how cells control developmental timetables. Sci. Adv. 9, eadh1849 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinha, D., Duijf, P. H. G. & Khanna, K. K. Mitotic slippage: an old tale with a new twist. Cell Cycle 18, 7–15 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rieder, C. L. & Maiato, H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell 7, 637–651 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rieder, C. L. Mitosis in vertebrates: the G2/M and M/A transitions and their associated checkpoints. Chromosome Res. 19, 291–306 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Fragouli, E. et al. The origin and impact of embryonic aneuploidy. Hum. Genet. 132, 1001–1013 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Vazquez-Diez, C., Yamagata, K., Trivedi, S., Haverfield, J. & FitzHarris, G. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. Proc. Natl Acad. Sci. USA 113, 626–631 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Paepe, C. et al. Human trophectoderm cells are not yet committed. Hum. Reprod. 28, 740–749 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Tarkowski, A. K., Suwinska, A., Czolowska, R. & Ozdzenski, W. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice. Dev. Biol. 348, 190–198 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Posfai, E. et al. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. eLife 6, e22906 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lorthongpanich, C., Doris, T. P., Limviphuvadh, V., Knowles, B. B. & Solter, D. Developmental fate and lineage commitment of singled mouse blastomeres. Development 139, 3722–3731 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korotkevich, E. et al. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev. Cell 40, 235–247 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maiato, H. & Logarinho, E. Mitotic spindle multipolarity without centrosome amplification. Nat. Cell Biol. 16, 386–394 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chatzimeletiou, K. et al. Cytoskeletal analysis of human blastocysts by confocal laser scanning microscopy following vitrification. Hum. Reprod. 27, 106–113 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Van Royen, E. et al. Multinucleation in cleavage stage embryos. Hum. Reprod. 18, 1062–1069 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Corujo-Simon, E. et al. Human trophectoderm becomes multi-layered by internalization at the polar region. Dev. Cell 59, 2497–2505 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zielke, N. & Edgar, B. A. FUCCI sensors: powerful new tools for analysis of cell proliferation. Wiley Interdiscip. Rev. Dev. Biol. 4, 469–487 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189–2203 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox, D. T. & Duronio, R. J. Endoreplication and polyploidy: insights into development and disease. Development 140, 3–12 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sher, N. et al. Fundamental differences in endoreplication in mammals and Drosophila revealed by analysis of endocycling and endomitotic cells. Proc. Natl Acad. Sci. USA 110, 9368–9373 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, R. L. & Davies, T. J. Lack of coupling between onset of giant transformation and genome endoreduplication in the mural trophectoderm of the mouse blastocyst. J. Exp. Zool. 265, 54–60 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ly, P. et al. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19, 68–75 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson, S. L. & Compton, D. A. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J. Cell Biol. 188, 369–381 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santaguida, S. et al. Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev. Cell 41, 638–651 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393–405 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, J. X., Villagomes, D., Zhao, H. & Zhu, M. cGAS in nucleus: the link between immune response and DNA damage repair. Front. Immunol. 13, 1076784 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popovic, M. et al. Chromosomal mosaicism in human blastocysts: the ultimate challenge of preimplantation genetic testing? Hum. Reprod. 33, 1342–1354 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerri, C. et al. Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587, 443–447 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, M. et al. Human embryo polarization requires PLC signaling to mediate trophectoderm specification. eLife 10, e65068 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossant, J. & Lis, W. T. Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo. Dev. Biol. 70, 255–261 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stephenson, R. O., Yamanaka, Y. & Rossant, J. Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 137, 3383–3391 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suwinska, A., Czolowska, R., Ozdzenski, W. & Tarkowski, A. K. Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev. Biol. 322, 133–144 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berg, D. K. et al. Trophectoderm lineage determination in cattle. Dev. Cell 20, 244–255 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandal, P. K. & Rossi, D. J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat. Protoc. 8, 568–582 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Weigert, M., Schmidt, U., Haase, R., Sugawara, K. & Myers, G. Star-convex polyhedra for 3D object detection and segmentation in microscopy. In IEEE Winter Conference on Applications of Computer Vision (WACV) 3655–3662 (IEEE, 2020).

  • Corujo-Simon, E. et al. Mechanisms to prepare human polar trophectoderm for blastocyst implantation. Dev. Cell 59, 2497–2505.e4 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Regin, M. et al. Lineage segregation in human pre-implantation embryos is specified by YAP1 and TEAD1. Hum. Reprod. 38, 1484–1498 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Junyent, S. et al. The first two blastomeres contribute unequally to the human embryo. Cell 187, 2838–2854 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bucevicius, J., Keller-Findeisen, J., Gilat, T., Hell, S. W. & Lukinavicius, G. Rhodamine–Hoechst positional isomers for highly efficient staining of heterochromatin. Chem. Sci. 10, 1962–1970 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moos, F. et al. Open-top multisample dual-view light-sheet microscope for live imaging of large multicellular systems. Nat. Methods 21, 798–803 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delon, J. & Desolneux, A. A Wasserstein-type distance in the space of Gaussian mixture models. SIAM J. Imaging Sci. 13, 936–970 (2020).

    Article 

    Google Scholar
     

  • Toader, B. et al. Image reconstruction in light-sheet microscopy: spatially varying deconvolution and mixed noise. J. Math. Imaging Vis. 64, 968–992 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ershov, D. et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 19, 829–832 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdelbaki, A. et al. Live imaging of late-stage preimplantation human embryos reveals de novo mitotic errors. Zenodo https://doi.org/10.5281/zenodo.16996800 (2025).

  • Abdelbaki, A. et al. Live imaging of late-stage preimplantation human embryos reveals de novo mitotic errors. Zenodo https://doi.org/10.5281/zenodo.16994339 (2025).

  • Leave a Comment