Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).
Vicens, Q. & Kieft, J. S. Thoughts on how to think (and talk) about RNA structure. Proc. Natl Acad. Sci. USA 119, e2112677119 (2022).
Levitt, M. Detailed molecular model for transfer ribonucleic acid. Nature 224, 759–763 (1969).
Robertus, J. D. et al. Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250, 546–551 (1974).
Burley, S. K. et al. Updated resources for exploring experimentally-determined PDB structures and Computed Structure Models at the RCSB Protein Data Bank. Nucleic Acids Res. 53, D564–D574 (2025).
Kwon, D. RNA function follows form—why is it so hard to predict? Nature 639, 1106–1108 (2025).
Deng, J. et al. RNA structure determination: from 2D to 3D. Fundam. Res. 3, 727–737 (2023).
Wu, M. & Lander, G. C. How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Curr. Opin. Struct. Biol. 64, 9–16 (2020).
Liu, D., Thélot, F. A., Piccirilli, J. A., Liao, M. & Yin, P. Sub-3-Å cryo-EM structure of RNA enabled by engineered homomeric self-assembly. Nat. Methods 19, 576–585 (2022).
Langeberg, C. J. & Kieft, J. S. A generalizable scaffold-based approach for structure determination of RNAs by cryo-EM. Nucleic Acids Res. 51, e100 (2023).
Sampedro Vallina, N., McRae, E. K. S., Hansen, B. K., Boussebayle, A. & Andersen, E. S. RNA origami scaffolds facilitate cryo-EM characterization of a Broccoli–Pepper aptamer FRET pair. Nucleic Acids Res. 51, 4613–4624 (2023).
Haack, D. B. et al. Scaffold-enabled high-resolution cryo-EM structure determination of RNA. Nat. Commun. 16, 880 (2025).
Kretsch, R. C. et al. Complex water networks visualized by cryogenic electron microscopy of RNA. Nature 642, 250–259 (2025).
Wang, L. et al. Cryo-EM reveals mechanisms of natural RNA multivalency. Science 388, 545–550 (2025).
Kretsch, R. C. et al. Naturally ornate RNA-only complexes revealed by cryo-EM. Nature 643, 1135–1142 (2025).
Ling, X. et al. Cryo-EM structure of a natural RNA nanocage. Nature 664, 1107–1115 (2025).
Zhang, S. et al. Structural insights into higher-order natural RNA-only multimers. Nat. Struct. Mol. Biol. 32, 2012–2021 (2025).
Chen, X. et al. RNA sample optimization for cryo-EM analysis. Nat. Protoc. 20, 1114–1157 (2025).
Ni, T. et al. High-resolution in situ structure determination by cryo-electron tomography and subtomogram averaging using emClarity. Nat. Protoc. 17, 421–444 (2022).
Hoffmann, P. C. et al. Structures of the eukaryotic ribosome and its translational states in situ. Nat. Commun. 13, 7435 (2022).
Cheng, J. et al. Capturing eukaryotic ribosome dynamics in situ at high resolution. Nat. Struct. Mol. Biol. 32, 698–708 (2025).
Kretsch, R. C. et al. Tertiary folds of the SL5 RNA from the 5′ proximal region of SARS-CoV-2 and related coronaviruses. Proc. Natl Acad. Sci. USA 121, e2320493121 (2024).
Bonilla, S. L., Sherlock, M. E., MacFadden, A. & Kieft, J. S. A viral RNA hijacks host machinery using dynamic conformational changes of a tRNA-like structure. Science 374, 955–960 (2021).
Yang, W. et al. Structural insights into dynamics of the BMV TLS aminoacylation. Nat. Commun. 16, 1276 (2025).
Chen, J. et al. Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication–transcription complex. Nat. Struct. Mol. Biol. 29, 250–260 (2022).
Dandey, V. P. et al. Time-resolved cryo-EM using Spotiton. Nat. Methods 17, 897–900 (2020).
Fischer, N., Konevega, A. L., Wintermeyer, W., Rodnina, M. V. & Stark, H. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466, 329–333 (2010).
Torino, S., Dhurandhar, M., Stroobants, A., Claessens, R. & Efremov, R. G. Time-resolved cryo-EM using a combination of droplet microfluidics with on-demand jetting. Nat. Methods 20, 1400–1408 (2023).
Saecker, R. M. et al. Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy. Nat. Struct. Mol. Biol. 31, 1778–1788 (2024).
Xue, L. et al. Visualizing translation dynamics at atomic detail inside a bacterial cell. Nature 610, 205–211 (2022).
Liu, J. et al. Non-averaged single-molecule tertiary structures reveal RNA self-folding through individual-particle cryo-electron tomography. Nat. Commun. 15, 9084 (2024).
Krochmal, D., Roman, C., Lewicka, A., Shao, Y. & Piccirilli, J. A. Structural basis for promiscuity in ligand recognition by yjdF riboswitch. Cell Discov. 10, 37 (2024).
Das, N. K. et al. Crystal structure of a highly conserved enteroviral 5′ cloverleaf RNA replication element. Nat. Commun. 14, 1955 (2023).
Ojha, M. et al. Structure of saguaro cactus virus 3′ translational enhancer mimics 5′ cap for eIF4E binding. Proc. Natl Acad. Sci. USA 121, e2313677121 (2024).
Das, N. K., Vogt, J., Patel, A., Banna, H. A. & Koirala, D. Structural basis for a highly conserved RNA-mediated enteroviral genome replication. Nucleic Acids Res. 52, 11218–11233 (2024).
Radakovic, A. et al. A potential role for RNA aminoacylation prior to its role in peptide synthesis. Proc. Natl Acad. Sci. USA 121, e2410206121 (2024).
Hegde, S. et al. Mechanistic studies of small molecule ligands selective to RNA single G bulges. Nucleic Acids Res. 53, gkaf559 (2025).
Lewicka, A. et al. Crystal structure of a cap-independent translation enhancer RNA. Nucleic Acids Res. 51, 8891–8907 (2023).
Ding, J. et al. Visualizing RNA conformational and architectural heterogeneity in solution. Nat. Commun. 14, 714 (2023).
Ding, J. et al. Capturing heterogeneous conformers of cobalamin riboswitch by cryo-EM. Nucleic Acids Res. 51, 9952–9960 (2023).
Ken, M. L. et al. RNA conformational propensities determine cellular activity. Nature 617, 835–841 (2023).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Yang, J. et al. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl Acad. Sci. USA 117, 1496–1503 (2020).
Pearce, R., Omenn, G. S. & Zhang, Y. De novo RNA tertiary structure prediction at atomic resolution using geometric potentials from deep learning. Preprint at bioRxiv https://doi.org/10.1101/2022.05.15.491755 (2022).
Wang, W. et al. trRosettaRNA: automated prediction of RNA 3D structure with transformer network. Nat. Commun. 14, 7266 (2023).
Peng, Z., Wang, W., Han, R., Zhang, F. & Yang, J. Protein structure prediction in the deep learning era. Curr. Opin. Struct. Biol. 77, 102495 (2022).
Shen, T. et al. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat. Methods 21, 2287–2298 (2024).
Kagaya, Y. et al. NuFold: end-to-end approach for RNA tertiary structure prediction with flexible nucleobase center representation. Nat. Commun. 16, 881 (2025).
Li, Y. et al. Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction. Nat. Commun. 14, 5745 (2023).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Baek, M. et al. Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024).
Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).
Bu, F. et al. RNA-Puzzles Round V: blind predictions of 23 RNA structures. Nat. Methods 22, 399–411 (2025).
Das, R. et al. Assessment of three-dimensional RNA structure prediction in CASP15. Proteins 91, 1747–1770 (2023).
Kretsch, R. C. et al. Assessment of nucleic acid structure prediction in CASP16. Proteins https://doi.org/10.1002/prot.70072 (2025).
Zhang, T., Hu, G., Yang, Y., Wang, J. & Zhou, Y. All-atom knowledge-based potential for RNA structure discrimination based on the distance-scaled finite ideal-gas reference state. J. Comput. Biol. 27, 856–867 (2019).
Tan, Y.-L., Wang, X., Shi, Y.-Z., Zhang, W. & Tan, Z.-J. rsRNASP: a residue-separation-based statistical potential for RNA 3D structure evaluation. Biophys. J. 121, 142–156 (2022).
Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 (2021).
Tarafder, S. & Bhattacharya, D. lociPARSE: a locality-aware invariant point attention model for scoring RNA 3D structures. J. Chem. Inf. Model. 64, 8655–8664 (2024).
Liu, X. et al. Quality assessment of RNA 3D structure models using deep learning and intermediate 2D maps. Preprint at bioRxiv https://doi.org/10.1101/2025.07.25.666746 (2025).
Schneider, B. et al. When will RNA get its AlphaFold moment?. Nucleic Acids Res. 51, 9522–9532 (2023).
Wang, W., Luo, Y., Peng, Z. & Yang, J. Accurate biomolecular structure prediction in CASP16 with optimized inputs to state-of-the-art predictors. Proteins https://doi.org/10.1002/prot.70030 (2025).
Chen, K., Zhou, Y., Wang, S. & Xiong, P. RNA tertiary structure modeling with BRiQ potential in CASP15. Proteins 91, 1771–1778 (2023).
Li, J., Zhang, S. & Chen, S.-J. Advancing RNA 3D structure prediction: exploring hierarchical and hybrid approaches in CASP15. Proteins 91, 1779–1789 (2023).
Sarzynska, J., Popenda, M., Antczak, M. & Szachniuk, M. RNA tertiary structure prediction using RNAComposer in CASP15. Proteins 91, 1790–1799 (2023).
Kagaya, Y. et al. Structure modeling protocols for protein multimer and RNA in CASP16 with enhanced MSAs, model ranking, and deep learning. Proteins https://doi.org/10.1002/prot.70033 (2025).
Zhang, S., Li, J., Zhou, Y. & Chen, S.-J. Enhancing RNA 3D structure prediction in CASP16: integrating physics-based modeling with machine learning for improved predictions. Proteins https://doi.org/10.1002/prot.26856 (2025).
Wang, W., Peng, Z. & Yang, J. Predicting RNA 3D structure and conformers using a pre-trained secondary structure model and structure-aware attention. Preprint at bioRxiv https://doi.org/10.1101/2025.04.09.647915 (2025).
Li, Y., Feng, C., Zhang, X. & Zhang, Y. Ab initio RNA structure prediction with composite language model and denoised end-to-end learning. Preprint at bioRxiv https://doi.org/10.1101/2025.03.05.641632 (2025).
Kappel, K. et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 17, 699–707 (2020).
Zhang, K. et al. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nat. Struct. Mol. Biol. 28, 747–754 (2021).
Terwilliger, T. C., Adams, P. D., Afonine, P. V. & Sobolev, O. V. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods 15, 905–908 (2018).
Watkins, A. M., Rangan, R. & Das, R. FARFAR2: improved de novo Rosetta prediction of complex global RNA folds. Structure 28, 963–976 (2020).
Li, J., Zhang, S., Zhang, D. & Chen, S.-J. Vfold-Pipeline: a web server for RNA 3D structure prediction from sequences. Bioinformatics 38, 4042–4043 (2022).
He, S. et al. Ribonanza: deep learning of RNA structure through dual crowdsourcing. Preprint at bioRxiv https://doi.org/10.1101/2024.02.24.581671 (2024).
Wang, X., Terashi, G. & Kihara, D. CryoREAD: de novo structure modeling for nucleic acids in cryo-EM maps using deep learning. Nat. Methods 20, 1739–1747 (2023).
Nakamura, A. et al. Fast and automated protein–DNA/RNA macromolecular complex modeling from cryo-EM maps. Brief. Bioinform. 24, bbac632 (2023).
Li, T. et al. All-atom RNA structure determination from cryo-EM maps. Nat. Biotechnol. 43, 97–105 (2025).
Li, T., Cao, H., He, J. & Huang, S.-Y. Automated detection and de novo structure modeling of nucleic acids from cryo-EM maps. Nat. Commun. 15, 9367 (2024).
Jamali, K. et al. Automated model building and protein identification in cryo-EM maps. Nature 628, 450–457 (2024).
Su, B., Huang, K., Peng, Z., Amunts, A. & Yang, J. CryoAtom improves model building for cryo-EM. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-025-01713-3 (2025).
Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).
Luo, Z., Ni, F., Wang, Q. & Ma, J. OPUS-DSD: deep structural disentanglement for cryo-EM single-particle analysis. Nat. Methods 20, 1729–1738 (2023).
Li, Y., Zhou, Y., Yuan, J., Ye, F. & Gu, Q. CryoSTAR: leveraging structural priors and constraints for cryo-EM heterogeneous reconstruction. Nat. Methods 21, 2318–2326 (2024).
Punjani, A. & Fleet, D. J. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nat. Methods 20, 860–870 (2023).
Chen, M. & Ludtke, S. J. Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. Nat. Methods 18, 930–936 (2021).
Huang, Y., Zhu, C., Yang, X. & Liu, M. High-resolution real-space reconstruction of cryo-EM structures using a neural field network. Nat. Mach. Intell. 6, 892–903 (2024).
Schwab, J., Kimanius, D., Burt, A., Dendooven, T. & Scheres, S. H. W. DynaMight: estimating molecular motions with improved reconstruction from cryo-EM images. Nat. Methods 21, 1855–1862 (2024).
Powell, B. M. & Davis, J. H. Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN. Nat. Methods 21, 1525–1536 (2024).
Rangan, R. et al. CryoDRGN-ET: deep reconstructing generative networks for visualizing dynamic biomolecules inside cells. Nat. Methods 21, 1537–1545 (2024).
Degenhardt, M. F. S. et al. Determining structures of RNA conformers using AFM and deep neural networks. Nature 637, 1234–1243 (2025).
Lee, Y.-T. et al. The conformational space of RNase P RNA in solution. Nature 637, 1244–1251 (2025).
Weinberg, Z. et al. Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. Nucleic Acids Res. 45, 10811–10823 (2017).
Kretsch, R. C. et al. RNA target highlights in CASP15: evaluation of predicted models by structure providers. Proteins 91, 1600–1615 (2023).
Mulvaney, T. et al. CASP15 cryo-EM protein and RNA targets: refinement and analysis using experimental maps. Proteins 91, 1935–1951 (2023).
Wang, W., Peng, Z. & Yang, J. Single-sequence protein structure prediction using supervised transformer protein language models. Nat. Comput. Sci. 2, 804–814 (2022).
Kaminski, K., Ludwiczak, J., Pawlicki, K., Alva, V. & Dunin-Horkawicz, S. pLM-BLAST: distant homology detection based on direct comparison of sequence representations from protein language models. Bioinformatics 39, btad579 (2023).
Hamamsy, T. et al. Protein remote homology detection and structural alignment using deep learning. Nat. Biotechnol. 42, 975–985 (2024).
Liu, W. et al. PLMSearch: protein language model powers accurate and fast sequence search for remote homology. Nat. Commun. 15, 2775 (2024).
Hong, L. et al. Fast, sensitive detection of protein homologs using deep dense retrieval. Nat. Biotechnol. 43, 983–995 (2025).
Xiao, B., Shi, Y. & Huang, L. Enhancing RNA 3D structure prediction: a hybrid approach combining expert knowledge and computational tools in CASP16. Proteins https://doi.org/10.1002/prot.70034 (2025).
Karan, A. & Rivas, E. All-at-once RNA folding with 3D motif prediction framed by evolutionary information. Nat. Methods 22, 2094–2106 (2025).
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).
Carter, A. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).
Gabashvili, I. S. et al. Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100, 537–549 (2000).






