Integrated experimental and AI innovations for RNA structure determination

  • Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).

    Article 

    Google Scholar
     

  • Vicens, Q. & Kieft, J. S. Thoughts on how to think (and talk) about RNA structure. Proc. Natl Acad. Sci. USA 119, e2112677119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levitt, M. Detailed molecular model for transfer ribonucleic acid. Nature 224, 759–763 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robertus, J. D. et al. Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250, 546–551 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burley, S. K. et al. Updated resources for exploring experimentally-determined PDB structures and Computed Structure Models at the RCSB Protein Data Bank. Nucleic Acids Res. 53, D564–D574 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Kwon, D. RNA function follows form—why is it so hard to predict? Nature 639, 1106–1108 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, J. et al. RNA structure determination: from 2D to 3D. Fundam. Res. 3, 727–737 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, M. & Lander, G. C. How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Curr. Opin. Struct. Biol. 64, 9–16 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D., Thélot, F. A., Piccirilli, J. A., Liao, M. & Yin, P. Sub-3-Ã… cryo-EM structure of RNA enabled by engineered homomeric self-assembly. Nat. Methods 19, 576–585 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langeberg, C. J. & Kieft, J. S. A generalizable scaffold-based approach for structure determination of RNAs by cryo-EM. Nucleic Acids Res. 51, e100 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampedro Vallina, N., McRae, E. K. S., Hansen, B. K., Boussebayle, A. & Andersen, E. S. RNA origami scaffolds facilitate cryo-EM characterization of a Broccoli–Pepper aptamer FRET pair. Nucleic Acids Res. 51, 4613–4624 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haack, D. B. et al. Scaffold-enabled high-resolution cryo-EM structure determination of RNA. Nat. Commun. 16, 880 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kretsch, R. C. et al. Complex water networks visualized by cryogenic electron microscopy of RNA. Nature 642, 250–259 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Cryo-EM reveals mechanisms of natural RNA multivalency. Science 388, 545–550 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kretsch, R. C. et al. Naturally ornate RNA-only complexes revealed by cryo-EM. Nature 643, 1135–1142 (2025).

  • Ling, X. et al. Cryo-EM structure of a natural RNA nanocage. Nature 664, 1107–1115 (2025).

  • Zhang, S. et al. Structural insights into higher-order natural RNA-only multimers. Nat. Struct. Mol. Biol. 32, 2012–2021 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. RNA sample optimization for cryo-EM analysis. Nat. Protoc. 20, 1114–1157 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, T. et al. High-resolution in situ structure determination by cryo-electron tomography and subtomogram averaging using emClarity. Nat. Protoc. 17, 421–444 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, P. C. et al. Structures of the eukaryotic ribosome and its translational states in situ. Nat. Commun. 13, 7435 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, J. et al. Capturing eukaryotic ribosome dynamics in situ at high resolution. Nat. Struct. Mol. Biol. 32, 698–708 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kretsch, R. C. et al. Tertiary folds of the SL5 RNA from the 5′ proximal region of SARS-CoV-2 and related coronaviruses. Proc. Natl Acad. Sci. USA 121, e2320493121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonilla, S. L., Sherlock, M. E., MacFadden, A. & Kieft, J. S. A viral RNA hijacks host machinery using dynamic conformational changes of a tRNA-like structure. Science 374, 955–960 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. et al. Structural insights into dynamics of the BMV TLS aminoacylation. Nat. Commun. 16, 1276 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication–transcription complex. Nat. Struct. Mol. Biol. 29, 250–260 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dandey, V. P. et al. Time-resolved cryo-EM using Spotiton. Nat. Methods 17, 897–900 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, N., Konevega, A. L., Wintermeyer, W., Rodnina, M. V. & Stark, H. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466, 329–333 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torino, S., Dhurandhar, M., Stroobants, A., Claessens, R. & Efremov, R. G. Time-resolved cryo-EM using a combination of droplet microfluidics with on-demand jetting. Nat. Methods 20, 1400–1408 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saecker, R. M. et al. Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy. Nat. Struct. Mol. Biol. 31, 1778–1788 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, L. et al. Visualizing translation dynamics at atomic detail inside a bacterial cell. Nature 610, 205–211 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Non-averaged single-molecule tertiary structures reveal RNA self-folding through individual-particle cryo-electron tomography. Nat. Commun. 15, 9084 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krochmal, D., Roman, C., Lewicka, A., Shao, Y. & Piccirilli, J. A. Structural basis for promiscuity in ligand recognition by yjdF riboswitch. Cell Discov. 10, 37 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, N. K. et al. Crystal structure of a highly conserved enteroviral 5′ cloverleaf RNA replication element. Nat. Commun. 14, 1955 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ojha, M. et al. Structure of saguaro cactus virus 3′ translational enhancer mimics 5′ cap for eIF4E binding. Proc. Natl Acad. Sci. USA 121, e2313677121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, N. K., Vogt, J., Patel, A., Banna, H. A. & Koirala, D. Structural basis for a highly conserved RNA-mediated enteroviral genome replication. Nucleic Acids Res. 52, 11218–11233 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radakovic, A. et al. A potential role for RNA aminoacylation prior to its role in peptide synthesis. Proc. Natl Acad. Sci. USA 121, e2410206121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hegde, S. et al. Mechanistic studies of small molecule ligands selective to RNA single G bulges. Nucleic Acids Res. 53, gkaf559 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewicka, A. et al. Crystal structure of a cap-independent translation enhancer RNA. Nucleic Acids Res. 51, 8891–8907 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, J. et al. Visualizing RNA conformational and architectural heterogeneity in solution. Nat. Commun. 14, 714 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, J. et al. Capturing heterogeneous conformers of cobalamin riboswitch by cryo-EM. Nucleic Acids Res. 51, 9952–9960 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ken, M. L. et al. RNA conformational propensities determine cellular activity. Nature 617, 835–841 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl Acad. Sci. USA 117, 1496–1503 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearce, R., Omenn, G. S. & Zhang, Y. De novo RNA tertiary structure prediction at atomic resolution using geometric potentials from deep learning. Preprint at bioRxiv https://doi.org/10.1101/2022.05.15.491755 (2022).

  • Wang, W. et al. trRosettaRNA: automated prediction of RNA 3D structure with transformer network. Nat. Commun. 14, 7266 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, Z., Wang, W., Han, R., Zhang, F. & Yang, J. Protein structure prediction in the deep learning era. Curr. Opin. Struct. Biol. 77, 102495 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, T. et al. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat. Methods 21, 2287–2298 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kagaya, Y. et al. NuFold: end-to-end approach for RNA tertiary structure prediction with flexible nucleobase center representation. Nat. Commun. 16, 881 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction. Nat. Commun. 14, 5745 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baek, M. et al. Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bu, F. et al. RNA-Puzzles Round V: blind predictions of 23 RNA structures. Nat. Methods 22, 399–411 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das, R. et al. Assessment of three-dimensional RNA structure prediction in CASP15. Proteins 91, 1747–1770 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kretsch, R. C. et al. Assessment of nucleic acid structure prediction in CASP16. Proteins https://doi.org/10.1002/prot.70072 (2025).

  • Zhang, T., Hu, G., Yang, Y., Wang, J. & Zhou, Y. All-atom knowledge-based potential for RNA structure discrimination based on the distance-scaled finite ideal-gas reference state. J. Comput. Biol. 27, 856–867 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, Y.-L., Wang, X., Shi, Y.-Z., Zhang, W. & Tan, Z.-J. rsRNASP: a residue-separation-based statistical potential for RNA 3D structure evaluation. Biophys. J. 121, 142–156 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarafder, S. & Bhattacharya, D. lociPARSE: a locality-aware invariant point attention model for scoring RNA 3D structures. J. Chem. Inf. Model. 64, 8655–8664 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Quality assessment of RNA 3D structure models using deep learning and intermediate 2D maps. Preprint at bioRxiv https://doi.org/10.1101/2025.07.25.666746 (2025).

  • Schneider, B. et al. When will RNA get its AlphaFold moment?. Nucleic Acids Res. 51, 9522–9532 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W., Luo, Y., Peng, Z. & Yang, J. Accurate biomolecular structure prediction in CASP16 with optimized inputs to state-of-the-art predictors. Proteins https://doi.org/10.1002/prot.70030 (2025).

  • Chen, K., Zhou, Y., Wang, S. & Xiong, P. RNA tertiary structure modeling with BRiQ potential in CASP15. Proteins 91, 1771–1778 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J., Zhang, S. & Chen, S.-J. Advancing RNA 3D structure prediction: exploring hierarchical and hybrid approaches in CASP15. Proteins 91, 1779–1789 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarzynska, J., Popenda, M., Antczak, M. & Szachniuk, M. RNA tertiary structure prediction using RNAComposer in CASP15. Proteins 91, 1790–1799 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kagaya, Y. et al. Structure modeling protocols for protein multimer and RNA in CASP16 with enhanced MSAs, model ranking, and deep learning. Proteins https://doi.org/10.1002/prot.70033 (2025).

  • Zhang, S., Li, J., Zhou, Y. & Chen, S.-J. Enhancing RNA 3D structure prediction in CASP16: integrating physics-based modeling with machine learning for improved predictions. Proteins https://doi.org/10.1002/prot.26856 (2025).

  • Wang, W., Peng, Z. & Yang, J. Predicting RNA 3D structure and conformers using a pre-trained secondary structure model and structure-aware attention. Preprint at bioRxiv https://doi.org/10.1101/2025.04.09.647915 (2025).

  • Li, Y., Feng, C., Zhang, X. & Zhang, Y. Ab initio RNA structure prediction with composite language model and denoised end-to-end learning. Preprint at bioRxiv https://doi.org/10.1101/2025.03.05.641632 (2025).

  • Kappel, K. et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 17, 699–707 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. et al. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nat. Struct. Mol. Biol. 28, 747–754 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terwilliger, T. C., Adams, P. D., Afonine, P. V. & Sobolev, O. V. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods 15, 905–908 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watkins, A. M., Rangan, R. & Das, R. FARFAR2: improved de novo Rosetta prediction of complex global RNA folds. Structure 28, 963–976 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J., Zhang, S., Zhang, D. & Chen, S.-J. Vfold-Pipeline: a web server for RNA 3D structure prediction from sequences. Bioinformatics 38, 4042–4043 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, S. et al. Ribonanza: deep learning of RNA structure through dual crowdsourcing. Preprint at bioRxiv https://doi.org/10.1101/2024.02.24.581671 (2024).

  • Wang, X., Terashi, G. & Kihara, D. CryoREAD: de novo structure modeling for nucleic acids in cryo-EM maps using deep learning. Nat. Methods 20, 1739–1747 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura, A. et al. Fast and automated protein–DNA/RNA macromolecular complex modeling from cryo-EM maps. Brief. Bioinform. 24, bbac632 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, T. et al. All-atom RNA structure determination from cryo-EM maps. Nat. Biotechnol. 43, 97–105 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Li, T., Cao, H., He, J. & Huang, S.-Y. Automated detection and de novo structure modeling of nucleic acids from cryo-EM maps. Nat. Commun. 15, 9367 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jamali, K. et al. Automated model building and protein identification in cryo-EM maps. Nature 628, 450–457 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, B., Huang, K., Peng, Z., Amunts, A. & Yang, J. CryoAtom improves model building for cryo-EM. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-025-01713-3 (2025).

  • Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, Z., Ni, F., Wang, Q. & Ma, J. OPUS-DSD: deep structural disentanglement for cryo-EM single-particle analysis. Nat. Methods 20, 1729–1738 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Zhou, Y., Yuan, J., Ye, F. & Gu, Q. CryoSTAR: leveraging structural priors and constraints for cryo-EM heterogeneous reconstruction. Nat. Methods 21, 2318–2326 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjani, A. & Fleet, D. J. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nat. Methods 20, 860–870 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. & Ludtke, S. J. Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. Nat. Methods 18, 930–936 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y., Zhu, C., Yang, X. & Liu, M. High-resolution real-space reconstruction of cryo-EM structures using a neural field network. Nat. Mach. Intell. 6, 892–903 (2024).

    Article 

    Google Scholar
     

  • Schwab, J., Kimanius, D., Burt, A., Dendooven, T. & Scheres, S. H. W. DynaMight: estimating molecular motions with improved reconstruction from cryo-EM images. Nat. Methods 21, 1855–1862 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powell, B. M. & Davis, J. H. Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN. Nat. Methods 21, 1525–1536 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rangan, R. et al. CryoDRGN-ET: deep reconstructing generative networks for visualizing dynamic biomolecules inside cells. Nat. Methods 21, 1537–1545 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Degenhardt, M. F. S. et al. Determining structures of RNA conformers using AFM and deep neural networks. Nature 637, 1234–1243 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y.-T. et al. The conformational space of RNase P RNA in solution. Nature 637, 1244–1251 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weinberg, Z. et al. Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. Nucleic Acids Res. 45, 10811–10823 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kretsch, R. C. et al. RNA target highlights in CASP15: evaluation of predicted models by structure providers. Proteins 91, 1600–1615 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulvaney, T. et al. CASP15 cryo-EM protein and RNA targets: refinement and analysis using experimental maps. Proteins 91, 1935–1951 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W., Peng, Z. & Yang, J. Single-sequence protein structure prediction using supervised transformer protein language models. Nat. Comput. Sci. 2, 804–814 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaminski, K., Ludwiczak, J., Pawlicki, K., Alva, V. & Dunin-Horkawicz, S. pLM-BLAST: distant homology detection based on direct comparison of sequence representations from protein language models. Bioinformatics 39, btad579 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamamsy, T. et al. Protein remote homology detection and structural alignment using deep learning. Nat. Biotechnol. 42, 975–985 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. PLMSearch: protein language model powers accurate and fast sequence search for remote homology. Nat. Commun. 15, 2775 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, L. et al. Fast, sensitive detection of protein homologs using deep dense retrieval. Nat. Biotechnol. 43, 983–995 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, B., Shi, Y. & Huang, L. Enhancing RNA 3D structure prediction: a hybrid approach combining expert knowledge and computational tools in CASP16. Proteins https://doi.org/10.1002/prot.70034 (2025).

  • Karan, A. & Rivas, E. All-at-once RNA folding with 3D motif prediction framed by evolutionary information. Nat. Methods 22, 2094–2106 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Ã… resolution. Science 289, 905–920 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carter, A. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabashvili, I. S. et al. Solution structure of the E. coli 70S ribosome at 11.5 Ã… resolution. Cell 100, 537–549 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Comment