Generation of modified cows and sheep from spermatid-like haploid embryonic stem cells

  • Li, W. et al. Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490, 407–411 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605–617 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Genetic modification and screening in rat using haploid embryonic stem cells. Cell Stem Cell 14, 404–414 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, J. C. & Van Eenennaam, A. L. Electroporation-mediated genome editing of livestock zygotes. Front. Genet. 12, 648482 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hai, T., Teng, F., Guo, R., Li, W. & Zhou, Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24, 372–375 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, W., Chen, J. & Gao, S. Mammalian haploid stem cells: establishment, engineering and applications. Cell. Mol. Life Sci. 76, 2349–2367 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elling, U. et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9, 563–574 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. et al. Structure-activity relationship studies of small-molecule inhibitors of Wnt response. Bioorg. Med. Chem. Lett. 19, 3825–3827 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, A. Formative pluripotency: the executive phase in a developmental continuum. Development 144, 365–373 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graf, A. et al. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl Acad. Sci. USA 111, 4139–4144 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Z. et al. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics 15, 756 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogliotti, Y. S. et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl Acad. Sci. USA 115, 2090–2095 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. et al. Establishment of bovine expanded potential stem cells. Proc. Natl Acad. Sci. USA 118, e2018505118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, C. et al. CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a guide RNA library. Cell Stem Cell 17, 221–232 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L., Song, L., Liu, X., Bai, L. & Li, G. KDM6A and KDM6B play contrasting roles in nuclear transfer embryos revealed by MERVL reporter system. EMBO Rep. 19, e46240 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czernik, M., Iuso, D., Toschi, P., Khochbin, S. & Loi, P. Remodeling somatic nuclei via exogenous expression of protamine 1 to create spermatid-like structures for somatic nuclear transfer. Nat. Protoc. 11, 2170–2188 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, W. et al. Reduced self-diploidization and improved survival of semi-cloned mice produced from androgenetic haploid embryonic stem cells through overexpression of Dnmt3b. Stem Cell Rep. 10, 477–493 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodgers, B. D. & Garikipati, D. K. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr. Rev. 29, 513–534 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irie, N. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishii, T. & Pera, R. A. Creating human germ cells for unmet reproductive needs. Nat. Biotechnol. 34, 470–473 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hwang, Y. S. et al. Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nat. Commun. 11, 5656 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Z. Q. et al. Generation of mouse haploid somatic cells by small molecules for genome-wide genetic screening. Cell Rep. 20, 2227–2237 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, S. et al. Induction of the G2/M transition stabilizes haploid embryonic stem cells. Development 141, 3842–3847 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, G. et al. Transcriptome-wide analysis of the SCNT bovine abnormal placenta during mid- to late gestation. Sci. Rep. 9, 20035 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, R. et al. Modification of alternative splicing in bovine somatic cell nuclear transfer embryos using engineered CRISPR-Cas13d. Sci. China Life Sci. 65, 2257–2268 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinoshita, M. et al. Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species. Development 148, dev199901 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. et al. Modulation of beta-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat. Commun. 4, 2403 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ross, P. J. & Cibelli, J. B. Bovine somatic cell nuclear transfer. Methods Mol. Biol. 636, 155–177 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Dissecting the molecular features of bovine-arrested eight-cell embryos using single-cell multi-omics sequencingdagger. Biol. Reprod. 108, 871–886 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alberio, R., Motlik, J., Stojkovic, M., Wolf, E. & Zakhartchenko, V. Behavior of M-phase synchronized blastomeres after nuclear transfer in cattle. Mol. Reprod. Dev. 57, 37–47 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • German, S. D., Lee, J. H., Campbell, K. H., Sweetman, D. & Alberio, R. Actin depolymerization is associated with meiotic acceleration in cycloheximide-treated ovine oocytes. Biol. Reprod. 92, 103 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. Transient Dux expression facilitates nuclear transfer and induced pluripotent stem cell reprogramming. EMBO Rep. 21, e50054 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Q. et al. Generation of fertile cloned rats by regulating oocyte activation. Science 302, 1179 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furusawa, T. et al. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses. Biol. Reprod. 89, 28 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, S. et al. Derivation of hypermethylated pluripotent embryonic stem cells with high potency. Cell Res. 28, 22–34 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169, 243–257 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Establishment of mouse expanded potential stem cells. Nature 550, 393–397 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, X. et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilarino, M. et al. Derivation of sheep embryonic stem cells under optimized conditions. Reproduction 160, 761–772 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, S. K. et al. Methods for expansion of human embryonic stem cells. Stem Cells 23, 605–609 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Los Angeles, A., Okamura, D. & Wu, J. Highly efficient derivation of pluripotent stem cells from mouse preimplantation and postimplantation embryos in serum-free conditions. Methods Mol. Biol. 2005, 29–36 (2019).

    Article 

    Google Scholar
     

  • Ludwig, T. E. et al. Feeder-independent culture of human embryonic stem cells. Nat. Methods 3, 637–646 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. M. et al. In vitro expansion of human sperm through nuclear transfer. Cell Res. 30, 356–359 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhong, C. et al. Generation of human haploid embryonic stem cells from parthenogenetic embryos obtained by microsurgical removal of male pronucleus. Cell Res. 26, 743–746 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elling, U. et al. Derivation and maintenance of mouse haploid embryonic stem cells. Nat. Protoc. 14, 1991–2014 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shirasawa, A. et al. Efficient derivation of embryonic stem cells and primordial germ cell-like cells in cattle. J. Reprod. Dev. 70, 82–95 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ross, P. J. et al. Activation of bovine somatic cell nuclear transfer embryos by PLCZ cRNA injection. Reproduction 137, 427–437 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owen, J. R. et al. One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes. BMC Genomics 22, 118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajkova, P. et al. DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol. Biol. 200, 143–154 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells. Sci. Rep. 7, 2320 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chow, R. D., Chen, J. S., Shen, J. & Chen, S. A web tool for the design of prime-editing guide RNAs. Nat. Biomed. Eng. 5, 190–194 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palazzese, L., Czernik, M., Iuso, D., Toschi, P. & Loi, P. Nuclear quiescence and histone hyper-acetylation jointly improve protamine-mediated nuclear remodeling in sheep fibroblasts. PLoS ONE 13, e0193954 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grobet, L. et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71–74 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38, 813–818 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y., Spitzer, S., Agathou, S., Karadottir, R. T. & Smith, A. Gene editing in rat embryonic stem cells to produce in vitro models and in vivo reporters. Stem Cell Rep. 9, 1262–1274 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patch, A. M. et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature 521, 489–494 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, C. & Tammi, M. T. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10, 80 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, H. et al. Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell 184, 2843–2859 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, T. et al. Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell 23, 31–45 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, G. et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in Mid-gastrula Mouse Embryo. Dev. Cell 36, 681–697 (2016).

  • Zhi, M. et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Res. 32, 383–400 (2022).

  • Wen, J. et al. Single-cell analysis reveals lineage segregation in early post-implantation mouse embryos. J. Biol. Chem. 292, 9840–9854 (2017).

  • Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).

  • van Leeuwen, J., Berg, D. K. & Pfeffer, P. L. Morphological and gene expression changes in cattle embryos from hatched blastocyst to early gastrulation stages after transfer of in vitro produced embryos. PLoS ONE https://doi.org/10.1371/journal.pone.0129787 (2015).

  • Pérez-Gómez, A., González-Brusi, L., Bermejo-Álvarez, P. & Ramos-Ibeas, P. Lineage differentiation markers as a proxy for embryo viability in farm ungulates. Front. Vet. Sci. 8, 680539 (2021).

  • Leave a Comment