Folding-mediated secretion of pure bispecific antibodies

  • Carter, P. J. & Rajpal, A. Designing antibodies as therapeutics. Cell 185, 2789–2805 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. W. & Zhang, W. Current trends and challenges in the downstream purification of bispecific antibodies. Antib. Ther. 4, 73–88 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atwell, S., Ridgway, J. B., Wells, J. A. & Carter, P. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J. Mol. Biol. 270, 26–35 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, H. J., Kim, Y. J., Lee, S. & Kim, Y. S. A heterodimeric Fc-based bispecific antibody simultaneously targeting VEGFR-2 and Met exhibits potent antitumor activity. Mol. Cancer Ther. 12, 2748–2759 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Nardis, C. et al. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G(1). J. Biol. Chem. 292, 14706–14717 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gramer, M. J. et al. Production of stable bispecific IgG1 by controlled Fab-arm exchange: scalability from bench to large-scale manufacturing by application of standard approaches. MAbs 5, 962–973 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunasekaran, K. et al. Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J. Biol. Chem. 285, 19637–19646 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Igawa T. H. & Tsunoda, H. Process for production of polypeptide by regulation of assembly. WO patent WO/2006/106905 (2006).

  • Labrijn, A. F. et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc. Natl Acad. Sci. USA 110, 5145–5150 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merchant, A. M. et al. An efficient route to human bispecific IgG. Nat. Biotechnol. 16, 677–681 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, G. L. et al. A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens. MAbs 3, 546–557 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ridgway, J. B., Presta, L. G. & Carter, P. Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9, 617–621 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strop, P. et al. Generating bispecific human IgG1 and IgG2 antibodies from any antibody pair. J. Mol. Biol. 420, 204–219 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Von Kreudenstein, T. S. et al. Improving biophysical properties of a bispecific antibody scaffold to aid developability: quality by molecular design. MAbs 5, 646–654 (2013).

    Article 

    Google Scholar
     

  • Moore, G. L. et al. A robust heterodimeric Fc platform engineered for efficient development of bispecific antibodies of multiple formats. Methods 154, 38–50 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy, A. J. et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc. Natl Acad. Sci. USA 111, 5153–5158 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonisch, M. et al. Novel CH1:CL interfaces that enhance correct light chain pairing in heterodimeric bispecific antibodies. Protein Eng. Des. Sel. 30, 685–696 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooke, H. A. et al. EFab domain substitution as a solution to the light-chain pairing problem of bispecific antibodies. MAbs 10, 1248–1259 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaefer, W. et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl Acad. Sci. USA 108, 11187–11192 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X. et al. Protein design of IgG/TCR chimeras for the co-expression of Fab-like moieties within bispecific antibodies. MAbs 7, 364–376 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dillon, M. et al. Efficient production of bispecific IgG of different isotypes and species of origin in single mammalian cells. MAbs 9, 213–230 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, S. M. et al. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat. Biotechnol. 32, 191–198 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism. J. Biol. Chem. 290, 7535–7562 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazor, Y. et al. Improving target cell specificity using a novel monovalent bispecific IgG design. MAbs 7, 377–389 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surowka, M., Schaefer, W. & Klein, C. Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins. MAbs 13, 1967714 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lariviere, L. et al. End-to-end approach for the characterization and control of product-related impurities in T cell bispecific antibody preparations. Int J. Pharm. X 5, 100157 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biswas, E. R. Selective secretion of circulating antibodies in the milk of the rat. Nature 192, 883–884 (1961).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feige, M. J. et al. An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol. Cell 34, 569–579 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lilie, H., Lang, K., Rudolph, R. & Buchner, J. Prolyl isomerases catalyze antibody folding in vitro. Protein Sci. 2, 1490–1496 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Preisendörfer, S., et al. FK506-binding protein 11 is a novel plasma cell-specific antibody folding catalyst with increased expression in idiopathic pulmonary fibrosis. Cells 11, 1341.

  • Beverley, P. C., Linch, D. & Callard, R. E. Human Leucocyte antigens. Haematol. Blood Transfus. 26, 309–313 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • Goldenberg, M. M. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin. Ther. 21, 309–318 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, J. et al. Coevolution of antibody stability and Vκ CDR-L3 canonical structure. J. Mol. Biol. 402, 708–719 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumiya, S. et al. Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J. Mol. Biol. 368, 767–779 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, H. J., Seok, S. H., Kim, Y. J., Seo, M. D. & Kim, Y. S. Crystal structures of immunoglobulin Fc heterodimers reveal the molecular basis for heterodimer formation. Mol. Immunol. 65, 377–383 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McLarty, K. et al. Associations between the uptake of 111In-DTPA-trastuzumab, HER2 density and response to trastuzumab (Herceptin) in athymic mice bearing subcutaneous human tumour xenografts. Eur. J. Nucl. Med. Mol. Imaging 36, 81–93 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, H. S. et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421, 756–760 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdiche, Y. N. et al. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs 7, 331–343 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuick Research. Bispecific antibody market opportunity, drug dosage, patent, price, sales & clinical trials insight 2030. GlobeNewswire https://www.globenewswire.com/news-release/2025/03/12/3041385/28124/en/Bispecific-Antibody-Market-Opportunity-Drug-Dosage-Patent-Price-Sales-Clinical-Trials-Insight-2030-New-Report-Highlights-600-Bispecific-Antibodies-in-Clinical-Trials-Worldwide.html (2025).

  • Behnke, J., Mann, M. J., Scruggs, F. L., Feige, M. J. & Hendershot, L. M. Members of the Hsp70 family recognize distinct types of sequences to execute ER quality control. Mol. Cell 63, 739–752 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knarr, G., Gething, M. J., Modrow, S. & Buchner, J. BiP binding sequences in antibodies. J. Biol. Chem. 270, 27589–27594 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcinowski, M. et al. Conformational selection in substrate recognition by Hsp70 chaperones. J. Mol. Biol. 425, 466–474 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper, P. R. et al. The contribution of cell surface FcRn in monoclonal antibody serum uptake from the intestine in suckling rat pups. Front Pharm. 5, 225 (2014).

    Article 

    Google Scholar
     

  • Feige, M. J., Hagn, F., Esser, J., Kessler, H. & Buchner, J. Influence of the internal disulfide bridge on the folding pathway of the CL antibody domain. J. Mol. Biol. 365, 1232–1244 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Micsonai, A. et al. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl Acad. Sci. USA 112, E3095–E3103 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabsch, W. XDS. Acta Crystallogr D 66, 125–132 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, P. Scaling and assessment of data quality. Acta Crystallogr D 62, 72–82 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr D 69, 1204–1214 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr D 67, 293–302 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66, 213–221 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frank, M., Walker, R. C., Lanzilotta, W. N., Prestegard, J. H. & Barb, A. W. Immunoglobulin G1 Fc domain motions: implications for Fc engineering. J. Mol. Biol. 426, 1799–1811 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D 66, 486–501 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D. et al. Assignment of 1H, 13C and 15N resonances of the reduced human IgG1 C(H)3 domain. Biomol. NMR Assign. 1, 93–94 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kaliss, N. & Pressman, D. Plasma and blood volumes of mouse organs, as determined with radioactive iodoproteins. Proc. Soc. Exp. Biol. Med. 75, 16–20 (1950).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, W. S. et al. Crystal structure of the ProAla Fc. Protein Data Bank https://doi.org/10.2210/pdb9mvx/pdb (2025).

  • Choi, W. S. et al. Crystal structure of the ProAla Fab. Protein Data Bank https://doi.org/10.2210/pdb9N8Q/pdb (2025).

  • Leave a Comment