Fecal exfoliome sequencing captures immune dynamics of the healthy and inflamed gut

  • Pinto, Y. & Bhatt, A. S. Sequencing-based analysis of microbiomes. Nat. Rev. Genet. 25, 829–845 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorbara, M. T. & Pamer, E. G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20, 365–380 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, D. P., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sender, R. & Milo, R. The distribution of cellular turnover in the human body. Nat. Med. 27, 45–48 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patankar, J. V. & Becker, C. Cell death in the gut epithelium and implications for chronic inflammation. Nat. Rev. Gastroenterol. Hepatol. 17, 543–556 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Halpern, K. B. et al. The cellular states and fates of shed intestinal cells. Nat. Metab. 5, 1858–1869 (2023).

    Article 

    Google Scholar
     

  • Mizoguchi, A. Animal models of inflammatory bowel disease. Prog. Mol. Biol. Transl. Sci. 105, 263–320 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jurjus, A. R., Khoury, N. N. & Reimund, J. M. Animal models of inflammatory bowel disease. J. Pharmacol. Toxicol. Methods 50, 81–92 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feuerstein, J. D. et al. AGA clinical practice guidelines on the management of moderate to severe ulcerative colitis. Gastroenterology 158, 1450–1461 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Feuerstein, J. D. et al. AGA clinical practice guidelines on the medical management of moderate to severe luminal and perianal fistulizing Crohn’s disease. Gastroenterology 160, 2496–2508 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Maloy, K. J. & Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298–306 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, J. T. Pathophysiology of inflammatory bowel diseases. N. Engl. J. Med. 383, 2652–2664 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henry, J. B. in Clinical Diagnosis by Laboratory Methods 16th edn (ed. Henry, J. B.) Ch. 25 (Saunders, 1979).

  • Albaugh, G. P. et al. Isolation of exfoliated colonic epithelial cells, a novel, non-invasive approach to the study of cellular markers. Int. J. Cancer 52, 347–350 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imperiale, T. F. et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 370, 1287–1297 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, P., Lai, S., Wu, S., Zhao, X. M. & Chen, W. H. Host DNA contents in fecal metagenomics as a biomarker for intestinal diseases and effective treatment. BMC Genomics 21, 348 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reck, M. et al. Stool metatranscriptomics: a technical guideline for mRNA stabilisation and isolation. BMC Genomics 16, 494 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosa, F. et al. Transcriptional changes detected in fecal RNA of neonatal dairy calves undergoing a mild diarrhea are associated with inflammatory biomarkers. PLoS ONE 13, e0191599 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knight, J. M. et al. Non-invasive analysis of intestinal development in preterm and term infants using RNA-sequencing. Sci. Rep. 4, 5453 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozsolak, F. & Milos, P. M. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet. 12, 87–98 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ungar, B. et al. Host transcriptome signatures in human faecal-washes predict histological remission in patients with IBD. Gut 71, gutjnl-2021-325516 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Alexander, M. et al. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe 30, 17–30 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinha, S. R. et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27, 659–670 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vermeire, S., Van Assche, G. & Rutgeerts, P. Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut 55, 426–431 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, S. C. et al. The External RNA Controls Consortium: a progress report. Nat. Methods 2, 731–734 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rio, D. C., Ares, M. Jr, Hannon, G. J. & Nilsen, T. W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb. Protoc. 2010, pdb prot5439 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Li, B. et al. A comprehensive mouse transcriptomic BodyMap across 17 tissues by RNA-seq. Sci. Rep. 7, 4200 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, 15.25.11–15.25.14 (2014).

    Article 

    Google Scholar
     

  • Mundy, R., MacDonald, T. T., Dougan, G., Frankel, G. & Wiles, S. Citrobacter rodentium of mice and man. Cell Microbiol. 7, 1697–1706 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Collins, J. W. et al. Citrobacter rodentium: infection, inflammation and the microbiota. Nat. Rev. Microbiol. 12, 612–623 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uhlig, H. H. et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25, 309–318 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauche, D. et al. LAG3+ regulatory T cells restrain interleukin-23-producing CX3CR1+ gut-resident macrophages during group 3 innate lymphoid cell-driven colitis. Immunity 49, 342–352 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aden, K. et al. Epithelial IL-23R signaling licenses protective IL-22 responses in intestinal inflammation. Cell Rep. 16, 2208–2218 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czarnewski, P. et al. Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification. Nat. Commun. 10, 2892 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munoz, M. et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 42, 321–331 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmieri, V. et al. Interleukin-33 signaling exacerbates experimental infectious colitis by enhancing gut permeability and inhibiting protective Th17 immunity. Mucosal Immunol. 14, 923–936 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaser, A. et al. Increased expression of CCL20 in human inflammatory bowel disease. J. Clin. Immunol. 24, 74–85 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Y. et al. Mucus sialylation determines intestinal host-commensal homeostasis. Cell 185, 1172–1188 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sirvinskas, D. et al. Single-cell atlas of the aging mouse colon. iScience 25, 104202 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrante, M. et al. Risankizumab as maintenance therapy for moderately to severely active Crohn’s disease: results from the multicentre, randomised, double-blind, placebo-controlled, withdrawal phase 3 FORTIFY maintenance trial. Lancet 399, 2031–2046 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langmann, T. et al. Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology 127, 26–40 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ajuebor, M. N., Kunkel, S. L. & Hogaboam, C. M. The role of CCL3/macrophage inflammatory protein-1α in experimental colitis. Eur. J. Pharmacol. 497, 343–349 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dobre, M. et al. Mucosal gene expression as a marker of molecular activity in Crohn’s disease: preliminary data. Rom. J. Morphol. Embryo 58, 1263–1268 (2017).


    Google Scholar
     

  • Wang, H. et al. Anti-mouse CD52 monoclonal antibody ameliorates intestinal epithelial barrier function in interleukin-10 knockout mice with spontaneous chronic colitis. Immunology 144, 254–262 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, B. W., Sheth, R. U., Dixit, P. D., Tchourine, K. & Vitkup, D. Macroecological dynamics of gut microbiota. Nat. Microbiol. 5, 768–775 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pathirana, W. G. W., Chubb, S. P., Gillett, M. J. & Vasikaran, S. D. Faecal calprotectin. Clin. Biochem. Rev. 39, 77–90 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, J. H. et al. The gut peptide Reg3g links the small intestine microbiome to the regulation of energy balance, glucose levels, and gut function. Cell Metab. 34, 1765–1778 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raffals, L. E. et al. The development and initial findings of a Study of a Prospective Adult Research Cohort with Inflammatory Bowel Disease (SPARC IBD). Inflamm. Bowel Dis. 28, 192–199 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Waldman, S. A. & Camilleri, M. Guanylate cyclase-C as a therapeutic target in gastrointestinal disorders. Gut 67, 1543–1552 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • West, N. R. et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 23, 579–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golob, J. et al. The microbiome in quiescent Crohn’s disease with persistent symptoms show disruptions in microbial sulfur and tryptophan pathways. Gastro. Hep. Adv. 3, 167–177 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Fellmann, F., Pretet, J. L. & Fellmann, D. Simplified protocol of solid-phase cDNA libraries for multiple PCR amplification. Biotechniques 21, 766, 768, 770 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Raineri, I., Moroni, C. & Senn, H. P. Improved efficiency for single-sided PCR by creating a reusable pool of first-strand cDNA coupled to a solid phase. Nucleic Acids Res. 19, 4010 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, L. L. et al. m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat. Biotechnol. 40, 1210–1219 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nat. Biotechnol. 41, 355–366 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Q. et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 41, 344–354 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ota, M. et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 184, 3006–3021 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soskic, B. et al. Immune disease risk variants regulate gene expression dynamics during CD4+ T cell activation. Nat. Genet. 54, 817–826 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Owczarzy, R. et al. IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res. 36, W163–W169 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, N. G. et al. Designing highly multiplex PCR primer sets with Simulated Annealing Design using Dimer Likelihood Estimation (SADDLE). Nat. Commun. 13, 1881 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 3 (2011).

    Article 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–354 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, B. W. et al. Quantifying spatiotemporal variability and noise in absolute microbiota abundances using replicate sampling. Nat. Methods 16, 731–736 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Micro. 73, 5261–5267 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Comment