Deep-learning-based virtual screening of antibacterial compounds

  • Mayr, L. M. & Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 9, 580–588 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, J. K. 2nd et al. A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug resistance. Cell 181, 1518–1532 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imai, Y. et al. A new antibiotic selectively kills gram-negative pathogens. Nature 576, 459–464 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 12, 3864 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sellés Vidal, L., Isalan, M., Heap, J. T. & Ledesma-Amaro, R. A primer to directed evolution: current methodologies and future directions. RSC Chem. Biol. 4, 271–291 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitcheltree, M. J. et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 599, 507–512 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffman, P. S. Antibacterial discovery: 21st century challenges. Antibiotics (Basel) 9, 213 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • GBD 2019 Antimicrobial Resistance Collaborators Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 2221–2248 (2022).

    Article 

    Google Scholar
     

  • Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shivanyuk, A. N. et al. Enamine real database: making chemical diversity real. Chem. Today 25, 58–59 (2007).

    CAS 

    Google Scholar
     

  • Melo, M. C. R., Maasch, J. R. M. A. & de la Fuente-Nunez, C. Accelerating antibiotic discovery through artificial intelligence. Commun. Biol. 4, 1050 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 181, 475–483 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swanson, K. et al. Generative AI for designing and validating easily synthesizable and structurally novel antibiotics. Nat. Mach. Intell. 6, 338–353 (2024).

    Article 

    Google Scholar
     

  • Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zoffmann, S. et al. Machine learning-powered antibiotics phenotypic drug discovery. Sci. Rep. 9, 5013 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, X. et al. Explainable deep learning-assisted fluorescence discrimination for aminoglycoside antibiotic identification. Anal. Chem. 94, 829–836 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sulavik, M. C. et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45, 1126–1136 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zgurskaya, H. I., Krishnamoorthy, G., Ntreh, A. & Lu, S. Mechanism and function of the outer membrane channel tolc in multidrug resistance and physiology of enterobacteria. Front. Microbiol. 2, 189 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baba, T., et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, M., Kaur, M., Thompson, L. K. & Cox, G. A historical perspective on the multifunctional outer membrane channel protein TolC in Escherichia coli. NPJ Antimicrob. Resist 3, 6 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stumpfe, D., Hu, H. & Bajorath, J. Evolving concept of activity cliffs. ACS Omega 4, 14360–14368 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, W. et al. Strategies for pre-training graph neural networks. In Proc. 8th International Conference on Learning Representations (ed. Rush, A.) (ICLR, 2020).

  • Xu, K. et al. Representation learning on graphs with jumping knowledge networks. In Proc. 35th International Conference on Machine Learning (eds Dy, J. & Krause, A.) (PMLR, 2018).

  • You, Y. et al. Graph contrastive learning with augmentations. In Proc. 34th International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) (NeurIPS, 2020).

  • Sterling, T. & Irwin, J. J. ZINC 15—ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H., Wang, X., Zhang, Z. & Zhu, W. Out-of-distribution generalization on graphs: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 47, 10490–10512 (2022).

    Article 

    Google Scholar
     

  • Wang, Y., Wang, J., Cao, Z. & Barati Farimani, A. Molecular contrastive learning of representations via graph neural networks. Nat. Mach. Intell. 4, 279–287 (2022).

    Article 

    Google Scholar
     

  • Crunkhorn, S. Screening ultra-large virtual libraries. Nat. Rev. Drug Discov. 21, 95 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, W. et al. Open graph benchmark: datasets for machine learning on graphs. In Proc. 34th International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) (NeurIPS, 2020).

  • Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Truchon, J.-F. & Bayly, C. I. Evaluating virtual screening methods: good and bad metrics for the ‘early recognition’ problem. J. Chem. Inf. Model. 47, 488–508 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) (PMLR, 2017).

  • Scalia, G., Grambow, C. A., Pernici, B., Li, Y.-P. & Green, W. H. Evaluating scalable uncertainty estimation methods for deep learning-based molecular property prediction. J. Chem. Inf. Model. 60, 2697–2717 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raetz, C. R. H. et al. Discovery of new biosynthetic pathways: the lipid A story. J. Lipid Res. 50, S103–S108 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, J. et al. Structural basis of the UDP-diacylglucosamine pyrophosphohydrolase LpxH inhibition by sulfonyl piperazine antibiotics. Proc. Natl Acad. Sci. USA 117, 4109–4116 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohan, S., Kelly, T. M., Eveland, S. S., Raetz, C. R. & Anderson, M. S. An Escherichia coli gene (FabZ) encoding (3R)-hydroxymyristoyl acyl carrier protein dehydrase. Relation to fabA and suppression of mutations in lipid A biosynthesis. J. Biol. Chem. 269, 32896–32903 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keating, D. H., Carey, M. R. & Cronan, J. E. Jr. The unmodified (apo) form of Escherichia coli acyl carrier protein is a potent inhibitor of cell growth. J. Biol. Chem. 270, 22229–22235 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guest, R. L., Rutherford, S. T. & Silhavy, T. J. Border control: regulating LPS biogenesis. Trends Microbiol. 29, 334–345 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richter, M. F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K., Lee, K., Lee, H. & Shin, J. A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In Proc. 32nd International Conference on Neural Information Processing Systems (eds Bengio, S. et al.) (NeurIPS, 2018).

  • Winkens, J. et al. Contrastive training for improved out-of-distribution detection. Preprint at https://doi.org/10.48550/arXiv.2007.05566 (2020).

  • Graff, D. E., Shakhnovich, E. I. & Coley, C. W. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem. Sci. 12, 7866–7881 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soleimany, A. P. et al. Evidential deep learning for guided molecular property prediction and discovery. ACS Cent. Sci. 7, 1356–1367 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azzolin, S., Longa, A., Barbiero, P., Lio, P. & Passerini, A. Global explainability of GNNs via logic combination of learned concepts. In Proc. 11th International Conference on Learning Representations (ed. Liu, Y.) (ICLR, 2023).

  • Xuanyuan, H., Barbiero, P., Georgiev, D., Magister, L. C. & Liò, P. Global concept-based interpretability for graph neural networks via neuron analysis. In Proc. 37th AAAI Conference on Artificial Intelligence (eds Williams, B., Chen, Y. & Neville, J.) (AAAI, 2023).

  • Schölkopf, B. et al. Toward causal representation learning. Proc. IEEE 109, 612–634 (2021).

    Article 

    Google Scholar
     

  • Gao, H. et al. Robust causal graph representation learning against confounding effects. In Proc. 37th AAAI Conference on Artificial Intelligence (eds Williams, B., Chen, Y. & Neville, J.) (AAAI, 2023).

  • Rawal, A., Raglin, A., Rawat, D. B., Sadler, B. M. & McCoy, J. Causality for trustworthy artificial intelligence: Status, challenges and perspectives. ACM Comput. Surv. 57, 1–30 (2024).

    Article 

    Google Scholar
     

  • Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortmayr, K., de la Cruz Moreno, R. & Zampieri, M. Expanding the search for small-molecule antibacterials by multidimensional profiling. Nat. Chem. Biol. 18, 584–595 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magana, M. et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 20, e216–e230 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, F., de la Fuente-Nunez, C. & Collins, J. J. Leveraging artificial intelligence in the fight against infectious diseases. Science 381, 164–170 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nickerson, N. N., et al. A novel inhibitor of the LolCDE ABC transporter essential for lipoprotein trafficking in gram-negative bacteria. Antimicrob. Agents Chemother. 62, e02151-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plaut, R. D., Mocca, C. P., Prabhakara, R., Merkel, T. J. & Stibitz, S. Stably luminescent Staphylococcus aureus clinical strains for use in bioluminescent imaging. PLoS ONE 8, e59232 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girgis, H. S., et al. Single-molecule nanopore sequencing reveals extreme target copy number heterogeneity in arylomycin-resistant mutants. Proc. Natl Acad. Sci. USA 118, e2021958118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural networks? In Proc. 7th International Conference on Learning Representations (ICLR, 2019).

  • Xiong, Z. et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J. Med. Chem. 63, 8749–8760 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Velickovic, P. et al. Graph attention networks. In Proc. 6th International Conference on Learning Representations (eds Bengio, Y. & LeCun, Y.) (ICLR, 2018).

  • Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In Proc. 5th International Conference on Learning Representations (eds Dahl, G., Petrov, S. & Sindhwani, V.) (ICLR, 2017).

  • Wu, Z. et al. Representing long-range context for graph neural networks with global attention. In Proc. 35th International Conference on Neural Information Processing Systems (eds Ranzato, M. et al.) (NeurIPS, 2021).

  • Goh, G. B., Hodas, N. O., Siegel, C. & Vishnu, A. SMILES2Vec: an interpretable general-purpose deep neural network for predicting chemical properties. Preprint at https://doi.org/10.48550/arXiv.1712.02034 (2017).

  • Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. In Proc. 37th International Conference on Machine Learning (eds Iii, H. D. & Singh, A.) (PMLR, 2020).

  • Chen, T., Kornblith, S., Swersky, K., Norouzi, M. & Hinton, G. E. Big self-supervised models are strong semi-supervised learners. In Proc. 34th International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) (NeurIPS, 2020).

  • Sun, M., Xing, J., Wang, H., Chen, B. & Zhou, J. MoCL: data-driven molecular fingerprint via knowledge-aware contrastive learning from molecular graph. In Proc. 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (eds Zhu, F. et al.) (Association for Computing Machinery, 2021).

  • Kong, K. et al. Robust optimization as data augmentation for large-scale graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (ed. O’Conner, L.) (IEEE, 2022).

  • Shafahi, A. et al. Adversarial training for free! In Proc. 33th International Conference on Neural Information Processing Systems (NeurIPS, 2019).

  • Macielag, M. J. Chemical properties of antimicrobials and their uniqueness. In Antibiotic Discovery and Development (eds Dougherty, T. J. & Pucci, M. J.) (Springer, 2012).

  • Kolesnikov, A., Zhai, X. & Beyer, L. Revisiting self-supervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (ed. O’Conner, L.) (IEEE, 2019).

  • Wilson, A. G., Hu, Z., Salakhutdinov, R. & Xing, E. P. Deep kernel learning. In Proc. 19th International Conference on Artificial Intelligence and Statistics (eds Gretton, A. & Robert, C. C.) (PMLR, 2016).

  • Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In Proc. 33rd International Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.) (PMLR, 2016).

  • Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. In Proc. 31st International Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) (NeurIPS, 2017).

  • Wilson, A., Hu, Z., Salakhutdinov, R. & Xing, E. Stochastic variational deep kernel learning. In Proc. 30th International Conference on Neural Information Processing Systems (eds Lee, D. D. et al.) (NeurIPS, 2016).

  • He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision (ed. O’Conner, L.) (IEEE, 2015).

  • Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCloskey, K., Taly, A., Monti, F., Brenner, M. P. & Colwell, L. J. Using attribution to decode binding mechanism in neural network models for chemistry. Proc. Natl Acad. Sci. USA 116, 11624–11629 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gobbi, A., Giannetti, A. M., Chen, H. & Lee, M.-L. Atom-atom-path similarity and sphere exclusion clustering: tools for prioritizing fragment hits. J. Cheminform. 7, 11 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Comment