Mayr, L. M. & Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 9, 580–588 (2009).
Martin, J. K. 2nd et al. A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug resistance. Cell 181, 1518–1532 (2020).
Imai, Y. et al. A new antibiotic selectively kills gram-negative pathogens. Nature 576, 459–464 (2019).
Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 12, 3864 (2021).
Sellés Vidal, L., Isalan, M., Heap, J. T. & Ledesma-Amaro, R. A primer to directed evolution: current methodologies and future directions. RSC Chem. Biol. 4, 271–291 (2023).
Mitcheltree, M. J. et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 599, 507–512 (2021).
Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).
Hoffman, P. S. Antibacterial discovery: 21st century challenges. Antibiotics (Basel) 9, 213 (2020).
GBD 2019 Antimicrobial Resistance Collaborators Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 2221–2248 (2022).
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).
Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).
Shivanyuk, A. N. et al. Enamine real database: making chemical diversity real. Chem. Today 25, 58–59 (2007).
Melo, M. C. R., Maasch, J. R. M. A. & de la Fuente-Nunez, C. Accelerating antibiotic discovery through artificial intelligence. Commun. Biol. 4, 1050 (2021).
Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 181, 475–483 (2020).
Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).
Swanson, K. et al. Generative AI for designing and validating easily synthesizable and structurally novel antibiotics. Nat. Mach. Intell. 6, 338–353 (2024).
Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).
Zoffmann, S. et al. Machine learning-powered antibiotics phenotypic drug discovery. Sci. Rep. 9, 5013 (2019).
Tan, X. et al. Explainable deep learning-assisted fluorescence discrimination for aminoglycoside antibiotic identification. Anal. Chem. 94, 829–836 (2022).
Sulavik, M. C. et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45, 1126–1136 (2001).
Zgurskaya, H. I., Krishnamoorthy, G., Ntreh, A. & Lu, S. Mechanism and function of the outer membrane channel tolc in multidrug resistance and physiology of enterobacteria. Front. Microbiol. 2, 189 (2011).
Baba, T., et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).
Wright, M., Kaur, M., Thompson, L. K. & Cox, G. A historical perspective on the multifunctional outer membrane channel protein TolC in Escherichia coli. NPJ Antimicrob. Resist 3, 6 (2025).
Stumpfe, D., Hu, H. & Bajorath, J. Evolving concept of activity cliffs. ACS Omega 4, 14360–14368 (2019).
Hu, W. et al. Strategies for pre-training graph neural networks. In Proc. 8th International Conference on Learning Representations (ed. Rush, A.) (ICLR, 2020).
Xu, K. et al. Representation learning on graphs with jumping knowledge networks. In Proc. 35th International Conference on Machine Learning (eds Dy, J. & Krause, A.) (PMLR, 2018).
You, Y. et al. Graph contrastive learning with augmentations. In Proc. 34th International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) (NeurIPS, 2020).
Sterling, T. & Irwin, J. J. ZINC 15—ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337 (2015).
Li, H., Wang, X., Zhang, Z. & Zhu, W. Out-of-distribution generalization on graphs: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 47, 10490–10512 (2022).
Wang, Y., Wang, J., Cao, Z. & Barati Farimani, A. Molecular contrastive learning of representations via graph neural networks. Nat. Mach. Intell. 4, 279–287 (2022).
Crunkhorn, S. Screening ultra-large virtual libraries. Nat. Rev. Drug Discov. 21, 95 (2022).
Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018).
Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).
Hu, W. et al. Open graph benchmark: datasets for machine learning on graphs. In Proc. 34th International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) (NeurIPS, 2020).
Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).
Truchon, J.-F. & Bayly, C. I. Evaluating virtual screening methods: good and bad metrics for the ‘early recognition’ problem. J. Chem. Inf. Model. 47, 488–508 (2007).
Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) (PMLR, 2017).
Scalia, G., Grambow, C. A., Pernici, B., Li, Y.-P. & Green, W. H. Evaluating scalable uncertainty estimation methods for deep learning-based molecular property prediction. J. Chem. Inf. Model. 60, 2697–2717 (2020).
Raetz, C. R. H. et al. Discovery of new biosynthetic pathways: the lipid A story. J. Lipid Res. 50, S103–S108 (2009).
Cho, J. et al. Structural basis of the UDP-diacylglucosamine pyrophosphohydrolase LpxH inhibition by sulfonyl piperazine antibiotics. Proc. Natl Acad. Sci. USA 117, 4109–4116 (2020).
Mohan, S., Kelly, T. M., Eveland, S. S., Raetz, C. R. & Anderson, M. S. An Escherichia coli gene (FabZ) encoding (3R)-hydroxymyristoyl acyl carrier protein dehydrase. Relation to fabA and suppression of mutations in lipid A biosynthesis. J. Biol. Chem. 269, 32896–32903 (1994).
Keating, D. H., Carey, M. R. & Cronan, J. E. Jr. The unmodified (apo) form of Escherichia coli acyl carrier protein is a potent inhibitor of cell growth. J. Biol. Chem. 270, 22229–22235 (1995).
Guest, R. L., Rutherford, S. T. & Silhavy, T. J. Border control: regulating LPS biogenesis. Trends Microbiol. 29, 334–345 (2021).
Richter, M. F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017).
Lee, K., Lee, K., Lee, H. & Shin, J. A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In Proc. 32nd International Conference on Neural Information Processing Systems (eds Bengio, S. et al.) (NeurIPS, 2018).
Winkens, J. et al. Contrastive training for improved out-of-distribution detection. Preprint at https://doi.org/10.48550/arXiv.2007.05566 (2020).
Graff, D. E., Shakhnovich, E. I. & Coley, C. W. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem. Sci. 12, 7866–7881 (2021).
Soleimany, A. P. et al. Evidential deep learning for guided molecular property prediction and discovery. ACS Cent. Sci. 7, 1356–1367 (2021).
Azzolin, S., Longa, A., Barbiero, P., Lio, P. & Passerini, A. Global explainability of GNNs via logic combination of learned concepts. In Proc. 11th International Conference on Learning Representations (ed. Liu, Y.) (ICLR, 2023).
Xuanyuan, H., Barbiero, P., Georgiev, D., Magister, L. C. & Liò, P. Global concept-based interpretability for graph neural networks via neuron analysis. In Proc. 37th AAAI Conference on Artificial Intelligence (eds Williams, B., Chen, Y. & Neville, J.) (AAAI, 2023).
Schölkopf, B. et al. Toward causal representation learning. Proc. IEEE 109, 612–634 (2021).
Gao, H. et al. Robust causal graph representation learning against confounding effects. In Proc. 37th AAAI Conference on Artificial Intelligence (eds Williams, B., Chen, Y. & Neville, J.) (AAAI, 2023).
Rawal, A., Raglin, A., Rawat, D. B., Sadler, B. M. & McCoy, J. Causality for trustworthy artificial intelligence: Status, challenges and perspectives. ACM Comput. Surv. 57, 1–30 (2024).
Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).
Ortmayr, K., de la Cruz Moreno, R. & Zampieri, M. Expanding the search for small-molecule antibacterials by multidimensional profiling. Nat. Chem. Biol. 18, 584–595 (2022).
Magana, M. et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 20, e216–e230 (2020).
Wong, F., de la Fuente-Nunez, C. & Collins, J. J. Leveraging artificial intelligence in the fight against infectious diseases. Science 381, 164–170 (2023).
Nickerson, N. N., et al. A novel inhibitor of the LolCDE ABC transporter essential for lipoprotein trafficking in gram-negative bacteria. Antimicrob. Agents Chemother. 62, e02151-17 (2018).
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).
Plaut, R. D., Mocca, C. P., Prabhakara, R., Merkel, T. J. & Stibitz, S. Stably luminescent Staphylococcus aureus clinical strains for use in bioluminescent imaging. PLoS ONE 8, e59232 (2013).
Girgis, H. S., et al. Single-molecule nanopore sequencing reveals extreme target copy number heterogeneity in arylomycin-resistant mutants. Proc. Natl Acad. Sci. USA 118, e2021958118 (2021).
Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural networks? In Proc. 7th International Conference on Learning Representations (ICLR, 2019).
Xiong, Z. et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J. Med. Chem. 63, 8749–8760 (2020).
Velickovic, P. et al. Graph attention networks. In Proc. 6th International Conference on Learning Representations (eds Bengio, Y. & LeCun, Y.) (ICLR, 2018).
Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In Proc. 5th International Conference on Learning Representations (eds Dahl, G., Petrov, S. & Sindhwani, V.) (ICLR, 2017).
Wu, Z. et al. Representing long-range context for graph neural networks with global attention. In Proc. 35th International Conference on Neural Information Processing Systems (eds Ranzato, M. et al.) (NeurIPS, 2021).
Goh, G. B., Hodas, N. O., Siegel, C. & Vishnu, A. SMILES2Vec: an interpretable general-purpose deep neural network for predicting chemical properties. Preprint at https://doi.org/10.48550/arXiv.1712.02034 (2017).
Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. In Proc. 37th International Conference on Machine Learning (eds Iii, H. D. & Singh, A.) (PMLR, 2020).
Chen, T., Kornblith, S., Swersky, K., Norouzi, M. & Hinton, G. E. Big self-supervised models are strong semi-supervised learners. In Proc. 34th International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) (NeurIPS, 2020).
Sun, M., Xing, J., Wang, H., Chen, B. & Zhou, J. MoCL: data-driven molecular fingerprint via knowledge-aware contrastive learning from molecular graph. In Proc. 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (eds Zhu, F. et al.) (Association for Computing Machinery, 2021).
Kong, K. et al. Robust optimization as data augmentation for large-scale graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (ed. O’Conner, L.) (IEEE, 2022).
Shafahi, A. et al. Adversarial training for free! In Proc. 33th International Conference on Neural Information Processing Systems (NeurIPS, 2019).
Macielag, M. J. Chemical properties of antimicrobials and their uniqueness. In Antibiotic Discovery and Development (eds Dougherty, T. J. & Pucci, M. J.) (Springer, 2012).
Kolesnikov, A., Zhai, X. & Beyer, L. Revisiting self-supervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (ed. O’Conner, L.) (IEEE, 2019).
Wilson, A. G., Hu, Z., Salakhutdinov, R. & Xing, E. P. Deep kernel learning. In Proc. 19th International Conference on Artificial Intelligence and Statistics (eds Gretton, A. & Robert, C. C.) (PMLR, 2016).
Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In Proc. 33rd International Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.) (PMLR, 2016).
Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. In Proc. 31st International Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) (NeurIPS, 2017).
Wilson, A., Hu, Z., Salakhutdinov, R. & Xing, E. Stochastic variational deep kernel learning. In Proc. 30th International Conference on Neural Information Processing Systems (eds Lee, D. D. et al.) (NeurIPS, 2016).
He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision (ed. O’Conner, L.) (IEEE, 2015).
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893 (1996).
McCloskey, K., Taly, A., Monti, F., Brenner, M. P. & Colwell, L. J. Using attribution to decode binding mechanism in neural network models for chemistry. Proc. Natl Acad. Sci. USA 116, 11624–11629 (2019).
Gobbi, A., Giannetti, A. M., Chen, H. & Lee, M.-L. Atom-atom-path similarity and sphere exclusion clustering: tools for prioritizing fragment hits. J. Cheminform. 7, 11 (2015).





