Extensive restoration of forelimb function in primates with spinal cord injury by neural stem cell transplantation

  • Singh, A. et al. Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 6, 309–331 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, P. et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264–1273 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonner, J. F. et al. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J. Neurosci. 31, 4675–4686 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, P. et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 83, 789–796 (2015).

    Article 

    Google Scholar
     

  • Kadoya, K. et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat. Med. 22, 479–487 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenzweig, E. S. et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat. Med. 24, 484–490 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumamaru, H. et al. Generation and post-injury integration of human spinal cord neural stem cells. Nat. Methods 15, 723–731 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poplawski, G. H. D. et al. Adult rat myelin enhances axonal outgrowth from neural stem cells. Sci. Transl. Med. 10, eaal2563 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koffler, J. et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 25, 263–269 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ceto, S. et al. Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury. Cell Stem Cell 27, 430–440 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poplawski, G. H. D. et al. Injured adult neurons regress to an embryonic transcriptional growth state. Nature 581, 77–82 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salegio, E. A. et al. A unilateral cervical spinal cord contusion injury model in non-human primates (Macaca mulatta). J. Neurotrauma 33, 439–459 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obaid, N. et al. The biomechanical implications of neck position in cervical contusion animal models of SCI. Front Neurol. 14, 1152472 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenzweig, E. S. et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat. Neurosci. 13, 1505–1512 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fehlings, M. G. & Chhabra, H. S. Recent trends in spinal trauma management and research. J. Clin. Orthop. Trauma. 49, 102351 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, B. & Tuszynski, M. H. Regulation of axonal regeneration after mammalian spinal cord injury. Nat. Rev. Mol. Cell Biol. 24, 396–413 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, J. & Lu, P. Optimization of trophic support for neural stem cell grafts in sites of spinal cord injury. Exp. Neurol. 291, 87–97 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnell, L. & Schwab, M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth. Nature 343, 269–272 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruiz-Sauri, A. et al. Glia to neuron ratio in the posterior aspect of the human spinal cord at thoracic segments relevant to spinal cord stimulation. J. Anat. 235, 997–1006 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, P. et al. Motor axonal regeneration after partial and complete spinal cord transection. J. Neurosci. 32, 8208–8218 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Álvarez, Z. et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 374, 848–856 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561, 396–400 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, K.-T. et al. Differences in morphometric measures of the uninjured porcine spinal cord and dural sac predict histological and behavioral outcomes after traumatic spinal cord injury. J. Neurotrauma 36, 3005–3017 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fawcett, J. W. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 45, 190–205 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Alías, G. et al. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 12, 1145–1151 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, P. et al. Prolonged human neural stem cell maturation supports recovery in injured rodent CNS. J. Clin. Invest. 127, 3287–3299 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lukovic, D., Stojkovic, M., Moreno-Manzano, V., Bhattacharya, S. S. & Erceg, S. Perspectives and future directions of human pluripotent stem cell-based therapies: lessons from Geron’s clinical trial for spinal cord injury. Stem Cells Dev. 23, 1–4 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Emery, E. et al. Apoptosis after traumatic human spinal cord injury. J. Neurosurg. 89, 911–920 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugai, K. et al. First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regen. Ther. 18, 321–333 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, J. R. et al. Long-term clinical and safety outcomes from a single-site phase 1 study of neural stem cell transplantation for chronic thoracic spinal cord injury. Cell Rep. Med. 5, 101841 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. et al. Spatial transcriptomics and single-nucleus RNA sequencing reveal a transcriptomic atlas of adult human spinal cord. eLife 12, RP92046 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, P., Jones, L. L., Snyder, E. Y. & Tuszynski, M. H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 181, 115–129 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fessler, R. G. et al. A phase 1/2a dose-escalation study of oligodendrocyte progenitor cells in individuals with subacute cervical spinal cord injury. J. Neurosurg. Spine 37, 812–820 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • McKenna, S. L. et al. Ten-year safety of pluripotent stem cell transplantation in acute thoracic spinal cord injury. J. Neurosurg. Spine 37, 321–330 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Levi, A. D. et al. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J. Neurotrauma 36, 891–902 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Curtis, E. et al. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 22, 941–950 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mcmahon, S. S. et al. Effect of cyclosporin A on functional recovery in the spinal cord following contusion injury. J. Anat. 215, 267–279 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madsen, J. R. et al. Tacrolimus (FK506) increases neuronal expression of GAP-43 and improves functional recovery after spinal cord injury in rats. Exp. Neurol. 154, 673–683 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuruta, S. et al. The effects of cyclosporin A and insulin on ischemic spinal cord injury in rabbits. Anesth. Analg. 102, 1722–1727 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weaver, L. C. et al. Methylprednisolone causes minimal improvement after spinal cord injury in rats, contrasting with benefits of an anti-integrin treatment. J. Neurotrauma 22, 1375–1387 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Sharp, K. G., Yee, K. M. & Steward, O. A re-assessment of treatment with a tyrosine kinase inhibitor (imatinib) on tissue sparing and functional recovery after spinal cord injury. Exp. Neurol. 254, 1–11 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabchevsky, A. G., Fugaccia, I., Sullivan, P. G. & Scheff, S. W. Cyclosporin A treatment following spinal cord injury to the rat: behavioral effects and stereological assessment of tissue sparing. J. Neurotrauma 18, 513–522 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. H. T. et al. Lack of neuroprotective effects of simvastatin and minocycline in a model of cervical spinal cord injury. Exp. Neurol. 225, 219–230 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, B. et al. Evaluation of benefits and risks of immunosuppressive drugs in biomaterial-based neural progenitor cell transplantation for spinal cord injury repair. Chem. Eng. J. 487, 150404 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Baloh, R. H. et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nat. Med. 28, 1813–1822 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenzweig, E. S. et al. Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J. Comp. Neurol. 513, 151–163 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidlin, E. et al. Behavioral assessment of manual dexterity in non-human primates. J. Vis. Exp. 57, 3258 (2011).


    Google Scholar
     

  • Rosenzweig, E. S. et al. Chondroitinase improves anatomical and functional outcomes after primate spinal cord injury. Nat. Neurosci. 22, 1269–1275 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nout, Y. S. et al. Animal models of neurologic disorders: a nonhuman primate model of spinal cord injury. Neurotherapeutics 9, 380–392 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Comment