Growth-coupled microbial biosynthesis of the animal pigment xanthommatin

  • Cho, J. S., Kim, G. B., Eun, H., Moon, C. W. & Lee, S. Y. Designing microbial cell factories for the production of chemicals. JACS Au 2, 1781–1799 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cravens, A., Payne, J. & Smolke, C. D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat. Commun. 10, 2142 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medema, M. H., de Rond, T. & Moore, B. S. Mining genomes to illuminate the specialized chemistry of life. Nat. Rev. Genet. 22, 553–571 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. J., Tang, X. & Moore, B. S. Genetic platforms for heterologous expression of microbial natural products. Nat. Prod. Rep. 36, 1313–1332 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Opgenorth, P. et al. Lessons from two design–build–test–learn cycles of dodecanol production in Escherichia coli aided by machine learning. ACS Synth. Biol. 8, 1337–1351 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, K. R. et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37, 817–837 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ko, Y.-S. et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem. Soc. Rev. 49, 4615–4636 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fong, S. S. et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91, 643–648 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alper, H., Jin, Y.-S., Moxley, J. F. & Stephanopoulos, G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7, 155–164 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jantama, K. et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 99, 1140–1153 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Otero, J. M. et al. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS ONE 8, e54144 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klamt, S. & Mahadevan, R. On the feasibility of growth-coupled product synthesis in microbial strains. Metab. Eng. 30, 166–178 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • von Kamp, A. & Klamt, S. Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms. Nat. Commun. 8, 15956 (2017).

    Article 

    Google Scholar
     

  • Banerjee, D. et al. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nat. Commun. 11, 5385 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yim, H. et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7, 445–452 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dinh, H. V., King, Z. A., Palsson, B. O. & Feist, A. M. Identification of growth-coupled production strains considering protein costs and kinetic variability. Metab. Eng. Commun. 7, e00080 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cicchillo, R. M. et al. An unusual carbon–carbon bond cleavage reaction during phosphinothricin biosynthesis. Nature 459, 871–874 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patteson, J. B. et al. Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science 374, 1005–1009 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagel, J. & Facchini, P. Biochemistry and occurrence of O-demethylation in plant metabolism. Front. Physiol. https://doi.org/10.3389/fphys.2010.00014 (2010).

  • Augustin, M. M., Augustin, J. M., Brock, J. R. & Kutchan, T. M. Enzyme morphinan N-demethylase for more sustainable opiate processing. Nat. Sustain. 2, 465–474 (2019).

    Article 

    Google Scholar
     

  • Soohoo, A. M., Cogan, D. P., Brodsky, K. L. & Khosla, C. Structure and mechanisms of assembly-line polyketide synthases. Annu. Rev. Biochem. 93, 471–498 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, F. Y.-H., Jung, H.-W., Tsuei, C.-Y. & Liao, J. C. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell 182, 933–946.e14 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W. et al. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat. Chem. Biol. 17, 845–855 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Figon, F. & Casas, J. Ommochromes in invertebrates: biochemistry and cell biology. Biol. Rev. 94, 156–183 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kumar, A., Williams, T. L., Martin, C. A., Figueroa-Navedo, A. M. & Deravi, L. F. Xanthommatin-based electrochromic displays inspired by nature. ACS Appl. Mater. Interfaces 10, 43177–43183 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, C. L. et al. Color-changing paints enabled by photoresponsive combinations of bio-inspired colorants and semiconductors. Adv. Sci. 10, 2302652 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sullivan, P. A., Wilson, D. J., Vallon, M., Bower, D. Q. & Deravi, L. F. Inkjet printing bio-inspired electrochromic pixels. Adv. Mater. Interfaces 10, 2202463 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, D. J., Martín-Martínez, F. J. & Deravi, L. F. Wearable light sensors based on unique features of a natural biochrome. ACS Sens 7, 523–533 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, C. A. et al. Biomimetic colorants and coatings designed with cephalopod-inspired nanocomposites. ACS Appl. Bio Mater. 4, 507–513 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • A. Martin, C. et al. A bioinspired, photostable UV-filter that protects mammalian cells against UV-induced cellular damage. Chem. Commun. 55, 12036–12039 (2019).

    Article 

    Google Scholar
     

  • Deravi, L. F., Cui, I. & Martin, C. A. Using cephalopod-inspired chemistry to extend long-wavelength ultraviolet and visible light protection of mineral sunscreens. Int. J. Cosmet. Sci. 46, 941–948 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riou, M. & Christidès, J.-P. Cryptic color change in a crab spider (Misumena vatia): identification and quantification of precursors and ommochrome pigments by HPLC. J. Chem. Ecol. 36, 412–423 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10, 1004 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Figon, F. et al. Uncyclized xanthommatin is a key ommochrome intermediate in invertebrate coloration. Insect Biochem. Mol. Biol. 124, 103403 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forman, K. A. & Thulin, C. D. Ommochrome wing pigments in the monarch butterfly Danaus plexippus (Lepidoptera: Nymphalidae). J. Insect Sci. 22, 12 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, G., Song, L., Du, X., Huang, X. & Wei, F. Evolutionary genomics of camouflage innovation in the orchid mantis. Nat. Commun. 14, 4821 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butenandt, A., Schiedt, U. & Biekert, E. Über ommochrome, III. Synthese des xanthommatins. J. Liebigs Ann. Chem. 588, 106–116 (1954).

    Article 
    CAS 

    Google Scholar
     

  • Nikel, P. I. & de Lorenzo, V. Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng. 50, 142–155 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turlin, J., Dronsella, B., De Maria, A., Lindner, S. N. & Nikel, P. I. Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation. Metab. Eng. 74, 191–205 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchanan, J. L., Rauckhorst, A. J. & Taylor, E. B. 3-hydroxykynurenine is a ROS-inducing cytotoxic tryptophan metabolite that disrupts the TCA cycle. Preprint at bioRxiv https://doi.org/10.1101/2023.07.10.548411 (2023).

  • Lewis-Luján, L. M. et al. Inhibition of pathogenic bacteria and fungi by natural phenoxazinone from octopus ommochrome pigments. J. Microbiol. Biotechnol. 32, 989–1002 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurnasov, O. et al. Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol. Lett. 227, 219–227 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurnasov, O. et al. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Chem. Biol. 10, 1195–1204 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matthijs, S. et al. The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol. Microbiol. 52, 371–384 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Roes-Hill, M., Goodwin, C. & Burton, S. Phenoxazinone synthase: what’s in a name? Trends Biotechnol. 27, 248–258 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hughes, M. A., Baggs, M. J., al-Dulayymi, J., Baird, M. S. & Williams, P. A. Accumulation of 2-aminophenoxazin-3-one-7-carboxylate during growth of Pseudomonas putida TW3 on 4-nitro-substituted substrates requires 4-hydroxylaminobenzoate lyase (PnbB). Appl. Environ. Microbiol. 68, 4965–4970 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue, S.-J. et al. Synthesis of cinnabarinic acid by metabolically engineered Pseudomonas chlororaphis GP72. Biotechnol. Bioeng. 116, 3072–3083 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christen, S., Southwell-Keely, P. T. & Stocker, R. Oxidation of 3-hydroxyanthranilic acid to the phenoxazinone cinnabarinic acid by peroxyl radicals and by compound I of peroxidases or catalase. Biochemistry 31, 8090–8097 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-García, E., Nikel, P. I., Aparicio, T. & de Lorenzo, V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb. Cell Fact. 13, 159 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yishai, O., Goldbach, L., Tenenboim, H., Lindner, S. N. & Bar-Even, A. Engineered assimilation of exogenous and endogenous formate in Escherichia coli. ACS Synth. Biol. 6, 1722–1731 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marx, C. J., Laukel, M., Vorholt, J. A. & Lidstrom, M. E. Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. J. Bacteriol. 185, 7169–7175 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogales, J. et al. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ. Microbiol. 22, 255–269 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alter, T. B. & Ebert, B. E. Determination of growth-coupling strategies and their underlying principles. BMC Bioinformatics 20, 447 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alter, T. B. et al. Metabolic growth-coupling strategies for in vivo enzyme selection systems. Metab. Eng. Commun. 20, e00257 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Claassens, N. J. et al. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab. Eng. 62, 30–41 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wirth, N. T., Kozaeva, E. & Nikel, P. I. Accelerated genome engineering of Pseudomonas putida by I-SceI-mediated recombination and CRISPR–Cas9 counterselection. Microb. Biotechnol. 13, 233–249 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Volke, D. C., Friis, L., Wirth, N. T., Turlin, J. & Nikel, P. I. Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab. Eng. Commun. 10, e00126 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volke, D. C., Wirth, N. T. & Nikel, P. I. Rapid genome engineering of Pseudomonas assisted by fluorescent markers and tractable curing of plasmids. Bio Protoc. 11, e3917 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartmans, S., Smits, J. P., van der Werf, M. J., Volkering, F. & de Bont, J. A. M. Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl. Environ. Microbiol. 55, 2850–2855 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matthijs, S. et al. Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ. Microbiol. 9, 425–434 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farrow, J. M. & Pesci, E. C. Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J. Bacteriol. 189, 3425–3433 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sazinas, P., Hansen, M. L., Aune, M. I., Fischer, M. H. & Jelsbak, L. A rare thioquinolobactin siderophore present in a bioactive Pseudomonas sp. DTU12.1. Genome Biol. Evol. 11, 3529–3533 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lane, M. C., Alteri, C. J., Smith, S. N. & Mobley, H. L. T. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc. Natl Acad. Sci. USA 104, 16669–16674 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O. & Feist, A. M. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 56, 1–16 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guzmán, G. I. et al. Enzyme promiscuity shapes adaptation to novel growth substrates. Mol. Syst. Biol. 15, e8462 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phaneuf, P. V., Gosting, D., Palsson, B. O. & Feist, A. M. ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation. Nucleic Acids Res 47, D1164–D1171 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orsi, E., Claassens, N. J., Nikel, P. I. & Lindner, S. N. Growth-coupled selection of synthetic modules to accelerate cell factory development. Nat. Commun. 12, 5295 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Femmer, C., Bechtold, M., Held, M. & Panke, S. In vivo directed enzyme evolution in nanoliter reactors with antimetabolite selection. Metab. Eng. 59, 15–23 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, H. et al. Directed metabolic pathway evolution enables functional pterin-dependent aromatic-amino-acid hydroxylation in Escherichia coli. ACS Synth. Biol. 9, 494–499 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, H. et al. Coupling S-adenosylmethionine–dependent methylation to growth: design and uses. PLoS Biol. 17, e2007050 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, B. et al. Reconstitution of TCA cycle with DAOCS to engineer Escherichia coli into an efficient whole cell catalyst of penicillin G. Proc. Natl Acad. Sci. USA 112, 9855–9859 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eggert, C., Temp, U., Dean, J. F. D. & Eriksson, K.-E. L. Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett. 376, 202–206 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerhart, J. C. & Pardee, A. B. The enzymology of control by feedback inhibition. J. Biol. Chem. 237, 891–896 (1962).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lloyd, C. J. et al. The genetic basis for adaptation of model-designed syntrophic co-cultures. PLoS Comput. Biol. 15, e1006213 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luhavaya, H., Sigrist, R., Chekan, J. R., McKinnie, S. M. K. & Moore, B. S. Biosynthesis of L-4-chlorokynurenine, an antidepressant prodrug and a non-proteinogenic amino acid found in lipopeptide antibiotics. Angew. Chem. Int. Ed. Engl. 58, 8394–8399 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, C. T., Haynes, S. W. & Ames, B. D. Aminobenzoates as building blocks for natural product assembly lines. Nat. Prod. Rep. 29, 37–59 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Alter, T.B. Model-based simulation of growth-coupled production of xanthommatin. Zenodo https://doi.org/10.5281/zenodo.17016978 (2025).

  • Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: constraints-based reconstruction and analysis for Python. BMC Syst. Biol. 7, 74 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandberg, T. E. et al. Evolution of Escherichia coli to 42 °C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Mol. Biol. Evol. 31, 2647–2662 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Galaxy Community The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Res. 52, W83–W94 (2024).

    Article 

    Google Scholar
     

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrison, E., Kronenberg, Z. N., Dawson, E. T., Pedersen, B. S. & Prins, P. A spectrum of free software tools for processing the VCF variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput. Biol. 18, e1009123 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dongol, M., El-Nahass, M. M., El-Denglawey, A., Elhady, A. F. & Abuelwafa, A. A. Optical properties of nano 5,10,15,20-tetraphenyl-21H,23H-prophyrin nickel (II) thin films. Curr. Appl. Phys. 12, 1178–1184 (2012).

    Article 

    Google Scholar
     

  • Kutuzova, S. et al. SmartPeak automates targeted and quantitative metabolomics data processing. Anal. Chem. 92, 15968–15974 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Comment